2 research outputs found

    Discovery of 4‑Amino‑<i>N</i>‑[(1<i>S</i>)‑1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7<i>H</i>‑pyrrolo[2,3‑<i>d</i>]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an Orally Bioavailable, Potent Inhibitor of Akt Kinases

    Full text link
    Wide-ranging exploration of analogues of an ATP-competitive pyrrolopyrimidine inhibitor of Akt led to the discovery of clinical candidate AZD5363, which showed increased potency, reduced hERG affinity, and higher selectivity against the closely related AGC kinase ROCK. This compound demonstrated good preclinical drug metabolism and pharmacokinetics (DMPK) properties and, after oral dosing, showed pharmacodynamic knockdown of phosphorylation of Akt and downstream biomarkers in vivo, and inhibition of tumor growth in a breast cancer xenograft model

    Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors

    Full text link
    Janus kinases (JAKs) have been demonstrated to be critical in cytokine signaling and have thus been implicated in both cancer and inflammatory diseases. The JAK family consists of four highly homologous members: JAK1–3 and TYK2. The development of small-molecule inhibitors that are selective for a specific family member would represent highly desirable tools for deconvoluting the intricacies of JAK family biology. Herein, we report the discovery of a potent JAK1 inhibitor, 24, which displays ∼1000-fold selectivity over the other highly homologous JAK family members (determined by biochemical assays), while also possessing good selectivity over other kinases (determined by panel screening). Moreover, this compound was demonstrated to be orally bioavailable and possesses acceptable pharmacokinetic parameters. In an in vivo study, the compound was observed to dose dependently modulate the phosphorylation of STAT3 (a downstream marker of JAK1 inhibition)
    corecore