92 research outputs found

    Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    Get PDF
    A critical determinant of tumor eradication by adoptive immunotherapy is the tumor associated antigen recognized by cytotoxic T lymphocytes. Here the authors generate ex vivo autologous cytotoxic T lymphocytes by exposure to antigens induced by DNA demethylation and report the results of a phase 1 trial of 25 patients with recurrent glioblastoma multiforme with tumor regression in three patients

    Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive signature of chemoresistance

    Get PDF
    Current standard treatments for metastatic colorectal cancer (CRC) are based on combination regimens with one of the two chemotherapeutic drugs, irinotecan or oxaliplatin. However, drug resistance frequently limits the clinical efficacy of these therapies. In order to gain new insights into mechanisms associated with chemoresistance, and departing from three distinct CRC cell models, we generated a panel of human colorectal cancer cell lines with acquired resistance to either oxaliplatin or irinotecan. We characterized the resistant cell line variants with regards to their drug resistance profile and transcriptome, and matched our results with datasets generated from relevant clinical material to derive putative resistance biomarkers. We found that the chemoresistant cell line variants had distinctive irinotecan- or oxaliplatin-specific resistance profiles, with non-reciprocal cross-resistance. Furthermore, we could identify several new, as well as some previously described, drug resistance-associated genes for each resistant cell line variant. Each chemoresistant cell line variant acquired a unique set of changes that may represent distinct functional subtypes of chemotherapy resistance. In addition, and given the potential implications for selection of subsequent treatment, we also performed an exploratory analysis, in relevant patient cohorts, of the predictive value of each of the specific genes identified in our cellular models

    A RT-qPCR system using a degenerate probe for specific identification and differentiation of SARS-CoV-2 Omicron (B.1.1.529) variants of concern

    Get PDF
    Fast surveillance strategies are needed to control the spread of new emerging SARS-CoV-2 variants and gain time for evaluation of their pathogenic potential. This was essential for the Omicron variant (B.1.1.529) that replaced the Delta variant (B.1.617.2) and is currently the dominant SARS-CoV-2 variant circulating worldwide. RT-qPCR strategies complement whole genome sequencing, especially in resource lean countries, but mutations in the targeting primer and probe sequences of new emerging variants can lead to a failure of the existing RT-qPCRs. Here, we introduced an RT-qPCR platform for detecting the Delta- and the Omicron variant simultaneously using a degenerate probe targeting the key ΔH69/V70 mutation in the spike protein. By inclusion of the L452R mutation into the RT-qPCR platform, we could detect not only the Delta and the Omicron variants, but also the Omicron sub-lineages BA.1, BA.2 and BA.4/BA.5. The RT-qPCR platform was validated in small- and large-scale. It can easily be incorporated for continued monitoring of Omicron sub-lineages, and offers a fast adaption strategy of existing RT-qPCRs to detect new emerging SARS-CoV-2 variants using degenerate probes.</p

    Targeted prevention in primary care aimed at lifestyle-related diseases:a study protocol for a non-randomised pilot study

    Get PDF
    Background: The consequences of lifestyle-related disease represent a major burden for the individual as well as for society at large. Individual preventive health checks to the general population have been suggested as a mean to reduce the burden of lifestyle-related diseases, though with mixed evidence on effectiveness. Several systematic reviews, on the other hand, suggest that health checks targeting people at high risk of chronic lifestyle-related diseases may be more effective. The evidence is however very limited. To effectively target people at high risk of lifestyle-related disease, there is a substantial need to advance and implement evidence-based health strategies and interventions that facilitate the identification and management of people at high risk. This paper reports on a non-randomized pilot study carried out to test the acceptability, feasibility and short-term effects of a healthcare intervention in primary care designed to systematically identify persons at risk of developing lifestyle-related disease or who engage in health-risk behavior, and provide targeted and coherent preventive services to these individuals. Methods: The intervention took place over a three-month period from September 2016 to December 2016. Taking a two-pronged approach, the design included both a joint and a targeted intervention. The former was directed at the entire population, while the latter specifically focused on patients at high risk of a lifestyle-related disease and/or who engage in health-risk behavior. The intervention was facilitated by a digital support system. The evaluation of the pilot will comprise both quantitative and qualitative research methods. All outcome measures are based on validated instruments and aim to provide results pertaining to intervention acceptability, feasibility, and short-term effects. Discussion: This pilot study will provide a solid empirical base from which to plan and implement a full-scale randomized study with the central aim of determining the efficacy of a preventive health intervention. Trial registration: Registered at Clinical Trial Gov (Unique Protocol ID: TOFpilot2016). Registered 29 April 2016. The study adheres to the SPIRIT guidelines

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Genome-wide association study of placental weight in 65,405 newborns and 113,620 parents reveals distinct and shared genetic influences between placental and fetal growth

    Get PDF
    A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Genome-Wide Association Study and Functional Characterization Identifies Candidate Genes for Insulin-Stimulated Glucose Uptake

    Get PDF
    Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in \u3e55,000 participants from three ancestry groups. We identified ten new loci (P \u3c 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits
    corecore