23 research outputs found
Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary
Objective: This executive summary presents in brief the current evidence assessed in the clinical practice guideline prepared by the Canadian Hypertensive Disorders of Pregnancy Working Group and published by Pregnancy Hypertension (. http://www.pregnancyhypertension.org/article/S2210-7789(14)00004-X/fulltext) to provide a reasonable approach to the diagnosis, evaluation, and treatment of the hypertensive disorders of pregnancy. Evidence: Published literature was retrieved through searches of Medline, CINAHL, and The Cochrane Library in March 2012 using appropriate controlled vocabulary (e.g., pregnancy, hypertension, pre-eclampsia, pregnancy toxemias) and key words (e.g., diagnosis, evaluation, classification, prediction, prevention, prognosis, treatment, postpartum follow-up). Results were restricted to systematic reviews, randomized control trials, controlled clinical trials, and observational studies published in French or English between January 2006 and February 2012. Searches were updated on a regular basis and incorporated in the guideline to September 2013. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. Values: The quality of evidence in the guideline summarized here was rated using the criteria described in the Report of the Canadian Task Force on Preventative Health Care (. Table 1)
Nonprocessive Motor Dynamics at the Microtubule Membrane Tube Interface
Key cellular processes such as cell division, membrane compartmentalization, and intracellular transport rely on motor proteins. Motors have been studied in detail on the single motor level such that information on their step size, stall force, average run length, and processivity are well known. However, in vivo, motors often work together, so that the question of their collective coordination has raised great interest. Here, we specifically attach motors to giant vesicles and examine collective motor dynamics during membrane tube formation. Image correlation spectroscopy reveals directed motion as processive motors walk at typical speeds (≤500 nm/s) along an underlying microtubule and accumulate at the tip of the growing membrane tube. In contrast, nonprocessive motors exhibit purely diffusive behavior, decorating the entire length of a microtubule lattice with diffusion constants at least 1000 times smaller than a freely-diffusing lipid-motor complex in a lipid bilayer (1 μm2/s); fluorescence recovery after photobleaching experiments confirm the presence of the slower-moving motor population at the microtubule-membrane tube interface. We suggest that nonprocessive motors dynamically bind and unbind to maintain a continuous interaction with the microtubule. This dynamic and continuous interaction is likely necessary for nonprocessive motors to mediate bidirectional membrane tube dynamics reported previously