3,372 research outputs found

    A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets

    Get PDF
    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly complementary, no attempt has ever been made to combine them, perhaps due to the different modeling approaches that are typically used in their interpretation. Here we present the first combined analysis of previously-published dayside spectra of the exoplanet HD 209458b obtained at low resolution with HST/WFC3 and Spitzer/IRAC, and at high resolution with VLT/CRIRES. By utilizing a novel retrieval algorithm capable of computing the joint probability distribution of low- and high-resolution spectra, we obtain tight constraints on the chemical composition of the planet's atmosphere. In contrast to the WFC3 data, we do not confidently detect H2O at high spectral resolution. The retrieved water abundance from the combined analysis deviates by 1.9 sigma from the expectations for a solar-composition atmosphere in chemical equilibrium. Measured relative molecular abundances of CO and H2O strongly favor an oxygen-rich atmosphere (C/O<1 at 3.5 sigma) for the planet when compared to equilibrium calculations including O rainout. From the abundances of the seven molecular species included in this study we constrain the planet metallicity to 0.1-1.0x the stellar value (1 sigma). This study opens the way to coordinated exoplanet surveys between the flagship ground- and space-based facilities, which ultimately will be crucial for characterizing potentially-habitable planets.Comment: 7 pages, 5 figures, accepted for publication in ApJL. Section 4 largely updated from previous version, Figure 2 updated to contain information on the T-p profil

    New Analysis Indicates No Thermal Inversion in the Atmosphere of HD 209458b

    Full text link
    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We re-examine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119 +/- 0.007%, 0.123 +/- 0.006%, 0.134 +/- 0.035%, and 0.215 +/- 0.008% in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well-fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.Comment: 8 pages, 5 figures; accepted for publication in Ap

    Detecting Distracted Driving with Deep Learning

    Get PDF
    © Springer International Publishing AG 2017Driver distraction is the leading factor in most car crashes and near-crashes. This paper discusses the types, causes and impacts of distracted driving. A deep learning approach is then presented for the detection of such driving behaviors using images of the driver, where an enhancement has been made to a standard convolutional neural network (CNN). Experimental results on Kaggle challenge dataset have confirmed the capability of a convolutional neural network (CNN) in this complicated computer vision task and illustrated the contribution of the CNN enhancement to a better pattern recognition accuracy.Peer reviewe

    A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C

    Get PDF
    The characterization of a physically-diverse set of transiting exoplanets is an important and necessary step towards establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly-commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet's atmospheric chemical abundances. We also update HAT-P-26b's transit ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p = 4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap

    An In-Situation Review of Flourishing in Ministry by Veteran Pastors

    Get PDF
    Veteran Pastor review Blooms book,&nbsp;Flourishing in Ministry. They conclude: Bloom's suggerstions for flourishing may seem idealistic if one is new to ministry or in a call that is a poor fit.They believe what Bloom presents are firm boundaries make what he proposed attainable

    Thermal Emission and Albedo Spectra of Super Earths with Flat Transmission Spectra

    Full text link
    Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features (Kreidberg et al. 2014b). We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000x solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (~400-800 K) planets can distinguish cloudy spectra, which have moderate albedos (0.05-0.20), from hazy models, which are very dark (0.0-0.03). Reflected light spectra of cold planets (~200 K) accessible to a space-based visible light coronagraph will have high albedos and large molecular features that will allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize this population of planets, including transmission spectra of hot (>1000 K) targets, thermal emission spectra of warm targets using the James Webb Space Telescope (JWST), high spectral resolution (R~10^5) observations of cloudy targets, and reflected light spectral observations of directly-imaged cold targets. Despite the dearth of features observed in super Earth transmission spectra to date, different observations will provide rich diagnostics of their atmospheres.Comment: 23 pages, 23 figures. Revised for publication in The Astrophysical Journa

    Silent Second Liens - Will Bankruptcy Courts Keep the Peace

    Get PDF
    corecore