1,191 research outputs found

    The Influence of Non-Uniform Cloud Cover on Transit Transmission Spectra

    Full text link
    We model the impact of non-uniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice-versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1-1.7 μ\mum). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the "patchy cloud-high mean molecular weight" degeneracy exists. We also explore the degeneracy of non-uniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud free high mean molecular weight warm Neptune, that both cloud free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key find is that the HST WFC3 transit transmission spectra of two well observed objects, the hot Jupiter HD189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼\sim100 ppm residual in the ingress and egress of the transit light curves, provided the transit timing is known to seconds.Comment: Accepted to ApJ Feb. 8, 201

    Retrieving Temperatures and Abundances of Exoplanet Atmospheres with High-Resolution Cross-Correlation Spectroscopy

    Get PDF
    Hi-resolution spectroscopy (R > 25,000) has recently emerged as one of the leading methods to detect atomic and molecular species in the atmospheres of exoplanets. However, it has so far been lacking in a robust method to extract quantitative constraints on temperature structure and molecular/atomic abundances. In this work we present a novel Bayesian atmospheric retrieval framework applicable to high resolution cross-correlation spectroscopy (HRCCS) that relies upon the cross-correlation between data and models to extract the planetary spectral signal. We successfully test the framework on simulated data and show that it can correctly determine Bayesian credibility intervals on atmospheric temperatures and abundances allowing for a quantitative exploration of the inherent degeneracies. Furthermore, our new framework permits us to trivially combine and explore the synergies between HRCCS and low-resolution spectroscopy (LRS) to provide maximal leverage on the information contained within each. This framework also allows us to quantitatively assess the impact of molecular line opacities at high resolution. We apply the framework to VLT CRIRES K-band spectra of HD 209458 b and HD 189733 b and retrieve abundant carbon monoxide but sub-solar abundances for water, largely invariant under different model assumptions. This confirms previous analysis of these datasets, but is possibly at odds with detections of water at different wavelengths and spectral resolutions. The framework presented here is the first step towards a true synergy between space observatories and ground-based hi-resolution observations.Comment: Accepted Version (01/16/19
    • …
    corecore