3 research outputs found

    The potential role of gut microbiota in shaping host energetics and metabolic rate

    Get PDF
    It is increasingly recognised that symbiotic microbiota (especially those present in the gut) have important influences on the functioning of their host. Here we review the interplay between this microbial community and the growth, metabolic rate and nutritional energy harvest of the host. We show how recent developments in experimental and analytical methods have allowed much easier characterisation of the nature, and increasingly the functioning, of the gut microbiota. Manipulation studies that remove or augment gut microorganisms or transfer them between hosts have allowed unprecedented insights into their impact. While much of the information to date has come from studies of laboratory model organisms, recent studies have used a more diverse range of host species, including those living in natural conditions, revealing their ecological relevance. The gut microbiota can provide the host with dietary nutrients that would be otherwise unobtainable, as well as allow the host flexibility in its capacity to cope with changing environments. The composition of the gut microbial community of a species can vary seasonally or when the host moves between environments (e.g. fresh and sea water in the case of migratory fish). It can also change with host diet choice, metabolic rate (or demands) and life stage. These changes in gut microbial community composition enable the host to live within different environments, adapt to seasonal changes in diet and maintain performance throughout its entire life history, highlighting the ecological relevance of the gut microbiota. While it is evident that gut microbes can underpin host metabolic plasticity, the causal nature of associations between particular microorganisms and host performance is not always clear unless a manipulative approach has been used. Many studies have focussed on a correlative approach by characterising microbial community composition, but there is now a need for more experimental studies in both wild and laboratory‐based environments, to reveal the true role of gut microbiota in influencing the functioning of their hosts, including its capacity to tolerate environmental change. We highlight areas where these would be particularly fruitful in the context of ecological energetics

    Top Ten Tips Palliative Care Clinicians Should Know About Trauma and Emergency Surgery

    Full text link
    There is growing interest in, and need for, integrating palliative care (PC) into the care of patients undergoing emergency surgery and those with traumatic injury. Thus, PC consults for these populations will likely grow in the coming years. Understanding the nuances and unique characteristics of these two acutely ill populations will improve the care that PC clinicians can provide. Using a modified Delphi technique, this article offers 10 tips that experts in the field, based on their broad clinical experience, believe PC clinicians should know about the care of trauma and emergency surgery patients. Keywords: decision-making; emergency surgery; frail elderly; palliative care; trauma surgery

    Implementation of genomic medicine for rare disease in a tertiary healthcare system: Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD)

    No full text
    Abstract Background In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education. Methods Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers. Results Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results. Conclusion Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities
    corecore