2,366 research outputs found

    Obstetric Thromboprophylaxis: The Swedish Guidelines

    Get PDF
    Obstetric thromboprophylaxis is difficult. Since 10 years Swedish obstetricians have used a combined risk estimation model and recommendations concerning to whom, at what dose, when, and for how long thromboprophylaxis is to be administrated based on a weighted risk score. In this paper we describe the background and validation of the Swedish guidelines for obstetric thromboprophylaxis in women with moderate-high risk of VTE, that is, at similar or higher risk as the antepartum risk among women with history of thrombosis. The risk score is based on major risk factors (i.e., 5-fold increased risk of thromboembolism). We present data on the efficacy of the model, the cost-effectiveness, and the lifestyle advice that is given. We believe that the Swedish guidelines for obstetric thromboprophylaxis aid clinicians in providing women at increased risk of VTE with effective and appropriate thromboprophylaxis, thus avoiding both over- and under-treatment

    Individual risk assessment of thrombosis in pregnancy

    Get PDF

    5 year Global 3-mm VLBI survey of Gamma-ray active blazars

    Get PDF
    The Global mm-VLBI Array (GMVA) is a network of 14 3\,mm and 7\,mm capable telescopes spanning Europe and the United States, with planned extensions to Asia. The array is capable of sensitive maps with angular resolution often exceeding 50\,μ\muas. Using the GMVA, a large sample of prominent γ\gamma-ray blazars have been observed approximately 6 monthly from later 2008 until now. Combining 3\,mm maps from the GMVA with near-in-time 7\,mm maps from the VLBA-BU-BLAZAR program and 2\,cm maps from the MOJAVE program, we determine the sub-pc morphology and high frequency spectral structure of γ\gamma-ray blazars. The magnetic field strength can be estimated at different locations along the jet under the assumption of equipartition between magnetic field and relativistic particle energies. Making assumptions on the jet magnetic field configuration (e.g. poloidal or toroidal), we can estimate the separation of the mm-wave "core" and the jet base, and estimate the strength of the magnetic field there. The results of this analysis show that on average, the magnetic field strength decreases with a power-law BrnB \propto r^{-n}, n=0.3±0.2n=0.3 \pm 0.2. This suggests that on average, the mm-wave "core" is 13\sim 1-3\,pc downstream of the de-projected jet apex and that the magnetic field strength is of the order Bapex520B_{\rm{apex}} \sim 5-20\,kG, broadly consistent with the predictions of magnetic jet launching (e.g. via magnetically arrested disks (MAD)).Comment: 6 pages, 1 figur

    The circumstellar envelope around the S-type AGB star W Aql Effects of an eccentric binary orbit

    Get PDF
    The CO(J=3-2) emission from the CSE of the binary S-type AGB star W Aql has been observed at subarcsecond resolution using ALMA. The aim of this paper is to investigate the wind properties of the AGB star and to analyse how the known companion has shaped the CSE. The average mass-loss rate during the creation of the detected CSE is estimated through modelling, using the ALMA brightness distribution and previously published single-dish measurements as observational constraints. The ALMA observations are presented and compared to the results from a 3D smoothed particle hydrodynamics (SPH) binary interaction model with the same properties as the W Aql system and with two different orbital eccentricities. Three-dimensional radiative transfer modelling is performed and the response of the interferometer is modelled and discussed. The estimated average mass-loss rate of W~Aql agrees with previous results. The size of the emitting region is consistent with photodissociation models. The CO(J=3-2) emission is dominated by a smooth component overlayed with two weak arc patterns with different separations. The larger pattern is predicted by the binary interaction model with separations of 10" and therefore likely due to the known companion. It is consistent with a binary orbit with low eccentricity. The smaller separation pattern is asymmetric and coincides with the dust distribution, but the separation timescale (200 yrs) is not consistent with any known process of the system. The separation of the known companions of the system is large enough to not have a very strong effect on the circumstellar morphology. The density contrast across the envelope of a binary with an even larger separation will not be easily detectable, even with ALMA, unless the orbit is strongly asymmetric or the AGB star has a much larger mass-loss rate.Comment: 10 pages, 8 figure

    N-Body Simulations of Compact Young Clusters near the Galactic Center

    Get PDF
    We investigate the dynamical evolution of compact young star clusters (CYCs) near the Galactic center (GC) using Aarseth's Nbody6 codes. The relatively small number of stars in the cluster (5,000-20,000) makes real-number N-body simulations for these clusters feasible on current workstations. Using Fokker-Planck (F-P) models, Kim, Morris, & Lee (1999) have made a survey of cluster lifetimes for various initial conditions, and have found that clusters with a mass <~ 2x10^4 Msun evaporate in ~10 Myr. These results were, however, to be confirmed by N-body simulations because some extreme cluster conditions, such as strong tidal forces and a large stellar mass range participating in the dynamical evolution, might violate assumptions made in F-P models. Here we find that, in most cases, the CYC lifetimes of previous F-P calculations are 5-30% shorter than those from the present N-body simulations. The comparison of projected number density profiles and stellar mass functions between N-body simulations and HST/NICMOS observations by Figer et al. (1999) suggests that the current tidal radius of the Arches cluster is ~1.0 pc, and the following parameters for the initial conditions of that cluster: total mass of 2x10^4 Msun and mass function slope for intermediate-to-massive stars of 1.75 (the Salpeter function has 2.35). We also find that the lower stellar mass limit, the presence of primordial binaries, the amount of initial mass segregation, and the choice of initial density profile (King or Plummer models) do not significantly affect the dynamical evolution of CYCs.Comment: 20 pages including 6 figures, To appear in ApJ, Dec 20 issu

    Motivational Interviewing in an ordinary clinical setting: A controlled clinical trial at the Swedish National Tobacco Quitline

    Get PDF
    AbstractIntroductionThe present study aimed to assess the effect of adding Motivational Interviewing (MI) to the first session of an effective smoking cessation treatment protocol in an ordinary clinical setting: the Swedish National Tobacco Quitline (SNTQ).MethodThe study was designed as a controlled clinical trial. Between September 2005 and October 2006, 772 clients accepted the invitation to participate in the study and were semi-randomised to either standard treatment (ST) or MI. The primary outcome measures were self-reported 7-day point prevalence abstinence and 6-month continuous abstinence.ResultsAt 12-month follow-up, the 772 clients were included in an intention to treat analysis. Of the clients allocated to MI, 57/296 (19%) reported 6-month continuous abstinence compared to 66/476 (14%) of the clients allocated to ST (OR 1.48, 95% CI 1.00–2.19; P=.047).ConclusionsIntegrating MI into a cognitive behavioural therapy-based smoking cessation counselling in an ordinary clinical setting at a tobacco quitline increased client 6-month continuous abstinence rates by 5%

    Evaporation of Compact Young Clusters near the Galactic Center

    Get PDF
    We investigate the dynamical evolution of compact young clusters (CYCs) near the Galactic center (GC) using Fokker-Planck models. CYCs are very young (< 5 Myr), compact (< 1 pc), and only a few tens of pc away from the GC, while they appear to be as massive as the smallest Galactic globular clusters (~10^4 Msun). A survey of cluster lifetimes for various initial mass functions, cluster masses, and galactocentric radii is presented. Short relaxation times due to the compactness of CYCs, and the strong tidal fields near the GC make clusters evaporate fairly quickly. Depending on cluster parameters, mass segregation may occur on a time scale shorter than the lifetimes of most massive stars, which accelerates the cluster's dynamical evolution even more. When the difference between the upper and lower mass boundaries of the initial mass function is large enough, strongly selective ejection of lighter stars makes massive stars dominate even in the outer regions of the cluster, so the dynamical evolution of those clusters is weakly dependent on the lower mass boundary. The mass bins for Fokker-Planck simulations were carefully chosen to properly account for a relatively small number of the most massive stars. We find that clusters with a mass <~ 2x10^4 Msun evaporate in <~ 10 Myr. A simple calculation based on the total masses in observed CYCs and the lifetimes obtained here indicates that the massive CYCs comprise only a fraction of the star formation rate (SFR) in the inner bulge estimated from Lyman continuum photons and far-IR observations.Comment: 20 pages in two-column format, accepted for publication in Ap
    corecore