4,820 research outputs found

    CPA\u27s guide to marriage, divorce and family taxation

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1441/thumbnail.jp

    Pathogenic Fungus Batrachochytrium Dendrobatidis in Marbled Water Frog Telmatobius Marmoratus: First Record From Lake Titicaca, Bolivia

    Get PDF
    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines worldwide but has not been well-studied among Critically Endangered amphibian species in Bolivia. We sampled free-living marbled water frogs Telmatobius marmoratus (Anura: Leptodactylidae) from Isla del Sol, Bolivia, for Bd using skin swabs and quantitative polymerase chain reactions. We detected Bd on 44% of T. marmoratus sampled. This is the first record of Bd in amphibians from waters associated with Lake Titicaca, Bolivia. These results further confirm the presence of Bd in Bolivia and substantiate the potential threat of this pathogen to the Critically Endangered, sympatric Titicaca water frog T. culeus and other Andean amphibians

    Diagnosing Capnocytophaga canimorsus Infections

    Get PDF
    We reviewed clinical and epidemiologic features of 56 human Capnocytophaga canimorsus isolates submitted during a 32-year period to California's Microbial Diseases Laboratory for identification. An increasing number of isolates identified as C. canimorsus have been submitted since 1990. Many laboratories still have difficulty correctly identifying this species

    Understanding initial data for black hole collisions

    Get PDF
    Numerical relativity, applied to collisions of black holes, starts with initial data for black holes already in each other's strong field. The initial hypersurface data typically used for computation is based on mathematical simplifying prescriptions, such as conformal flatness of the 3-geometry and longitudinality of the extrinsic curvature. In the case of head on collisions of equal mass holes, there is evidence that such prescriptions work reasonably well, but it is not clear why, or whether this success is more generally valid. Here we study these questions by considering the ``particle limit'' for head on collisions of nonspinning holes. Einstein's equations are linearized in the mass of the small hole, and described by a single gauge invariant spacetime function psi, for each multipole. The resulting equations have been solved by numerical evolution for collisions starting from various initial separations, and the evolution is studied on a sequence of hypersurfaces. In particular, we extract hypersurface data, that is psi and its time derivative, on surfaces of constant background Schwarzschild time. These evolved data can then be compared with ``prescribed'' data, evolved data can be replaced by prescribed data on any hypersurface, and evolved further forward in time, a gauge invariant measure of deviation from conformal flatness can be evaluated, etc. The main findings of this study are: (i) For holes of unequal mass the use of prescribed data on late hypersurfaces is not successful. (ii) The failure is likely due to the inability of the prescribed data to represent the near field of the smaller hole. (iii) The discrepancy in the extrinsic curvature is more important than in the 3-geometry. (iv) The use of the more general conformally flat longitudinal data does not notably improve this picture.Comment: 20 pages, REVTEX, 26 PS figures include

    Head-on collision of unequal mass black holes: close-limit predictions

    Full text link
    The close-limit method has given approximations in excellent agreement with those of numerical relativity for collisions of equal mass black holes. We consider here colliding holes with unequal mass, for which numerical relativity results are not available. We try to ask two questions: (i) Can we get approximate answers to astrophysical questions (ideal mass ratio for energy production, maximum recoil velocity, etc.), and (ii) can we better understand the limitations of approximation methods. There is some success in answering the first type of question, but more with the second, especially in connection with the issue of measures of the intrinsic mass of the colliding holes, and of the range of validity of the method.Comment: 19 pages, RevTeX + 9 postscript figure

    Conservative formulations of general relativistic kinetic theory

    Get PDF
    Experience with core-collapse supernova simulations shows that accurate accounting of total particle number and 4-momentum can be a challenge for computational radiative transfer. This accurate accounting would be facilitated by the use of particle number and 4-momentum transport equations that allow transparent conversion between volume and surface integrals in both configuration and momentum space. Such conservative formulations of general relativistic kinetic theory in multiple spatial dimensions are presented in this paper, and their relevance to core-collapse supernova simulations is described.Comment: 48 page

    Tensor Regression with Applications in Neuroimaging Data Analysis

    Get PDF
    Classical regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. Modern applications in medical imaging generate covariates of more complex form such as multidimensional arrays (tensors). Traditional statistical and computational methods are proving insufficient for analysis of these high-throughput data due to their ultrahigh dimensionality as well as complex structure. In this article, we propose a new family of tensor regression models that efficiently exploit the special structure of tensor covariates. Under this framework, ultrahigh dimensionality is reduced to a manageable level, resulting in efficient estimation and prediction. A fast and highly scalable estimation algorithm is proposed for maximum likelihood estimation and its associated asymptotic properties are studied. Effectiveness of the new methods is demonstrated on both synthetic and real MRI imaging data.Comment: 27 pages, 4 figure

    Dissipative fluids out of hydrostatic equilibrium

    Get PDF
    In the context of the M\"{u}ller-Israel-Stewart second order phenomenological theory for dissipative fluids, we analyze the effects of thermal conduction and viscosity in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of relaxation times. Stability and causality conditions are contrasted with conditions for which the ''effective inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required) Submitted to Classical and Quantum Gravit

    Dynamics of Relativistic Interacting Gases : from a Kinetic to a Fluid Description

    Get PDF
    Starting from a microscopic approach, we develop a covariant formalism to describe a set of interacting gases. For that purpose, we model the collision term entering the Boltzmann equation for a class of interactions and then integrate this equation to obtain an effective macroscopic description. This formalism will be useful to study the cosmic microwave background non-perturbatively in inhomogeneous cosmologies. It should also be useful for the study of the dynamics of the early universe and can be applied, if one considers fluids of galaxies, to the study of structure formation.Comment: Latex file, 28 pages, accepted for publication in Class. Quant. Gra
    • …
    corecore