3,340 research outputs found

    Stability of Fine Tuned Hierarchies in Strongly Coupled Chiral Models

    Get PDF
    A fine tuned hierarchy between a strongly coupled high energy compositeness scale and a much lower chiral symmetry breaking scale is a requisite ingredient in many models of dynamical electroweak symmetry breaking. Using a nonperturbative continuous Wilson renormalization group equation approach, we explore the stability of such a hierarchy against quantum fluctuations.Comment: 14,PURD-TH-94-1

    What skills do primary health care professionals need to provide effective self-management support?: seeking consumer perspectives

    Get PDF
    Author version made available in accordance with the publisher's policyObjective This research aimed to identify the skills required by primary health care (PHC) professionals to provide effective chronic condition prevention and self -management (CCPSM) support, according to the perceptions of a sample of Australian consumers and carers. Methods Qualitative data was collected and integrated from a focus group, key informant interviews and National Stakeholder meetings and a National Workshop, supported by an extensive literature review. Results With the exception of health professionals specifically trained or currently working in this area, consumers and carers perceive there is a lack of understanding, competence and practice of CCPSM support among PHC professionals. Discussion The PHC workforce appears not to have the full set of skills needed to meet the growing burden of chronic conditions on the health system. Recommendations include education and training that focuses on improved communication skills, knowledge of community support resources, identification of consumers' strengths and current capacities, collaborative care with other health professionals, consumers and carers, and psychosocial skills to understand the impact of chronic conditions from the person’s perspective

    Coherence resonance in models of an excitable neuron with both fast and slow dynamics

    Full text link
    We demonstrate the existence of noise-induced periodicity (coherence resonance) in both a discrete-time model and a continuous-time model of an excitable neuron. In particular, we show that the effects of noise added to the fast and slow dynamics of the models are dramatically different. A Fokker-Planck analysis gives a quantitative explanation of the effects

    Propagating spin-wave spectroscopy in nanometer-thick YIG films at millikelvin temperatures

    Full text link
    Performing propagating spin-wave spectroscopy of thin films at millikelvin temperatures is the next step towards the realisation of large-scale integrated magnonic circuits for quantum applications. Here we demonstrate spin-wave propagation in a 100 nm100\,\mathrm{nm}-thick yttrium-iron-garnet film at the temperatures down to 45 mK45 \,\mathrm{mK}, using stripline nanoantennas deposited on YIG surface for the electrical excitation and detection. The clear transmission characteristics over the distance of 10 μm10\,\mu \mathrm{m} are measured and the subtracted spin-wave group velocity and the YIG saturation magnetisation agree well with the theoretical values. We show that the gadolinium-gallium-garnet substrate influences the spin-wave propagation characteristics only for the applied magnetic fields beyond 75 mT75\,\mathrm{mT}, originating from a GGG magnetisation up to 47 kA/m47 \,\mathrm{kA/m} at 45 mK45 \,\mathrm{mK}. Our results show that the developed fabrication and measurement methodologies enable the realisation of integrated magnonic quantum nanotechnologies at millikelvin temperatures.Comment: 6 pages, 5 figure

    Discovery of the Isotopes with 11 <= Z <= 19

    Full text link
    A total of 194 isotopes with 11 ≤\le Z ≤\le 19 have been identified to date. The discovery of these isotopes which includes the observation of unbound nuclei, is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.Comment: to be pubslihed in At. Data Nucl. Data Table

    Properties of pattern formation and selection processes in nonequilibrium systems with external fluctuations

    Full text link
    We extend the phase field crystal method for nonequilibrium patterning to stochastic systems with external source where transient dynamics is essential. It was shown that at short time scales the system manifests pattern selection processes. These processes are studied by means of the structure function dynamics analysis. Nonequilibrium pattern-forming transitions are analyzed by means of numerical simulations.Comment: 15 poages, 8 figure

    Modulation of the Major Histocompatibility Complex Class II–Associated Peptide Repertoire by Human Histocompatibility Leukocyte Antigen (Hla)-Do

    Get PDF
    Antigen presentation by major histocompatibility complex class II molecules is essential for antibody production and T cell activation. For most class II alleles, peptide binding depends on the catalytic action of human histocompatibility leukocyte antigens (HLA)-DM. HLA-DO is selectively expressed in B cells and impedes the activity of DM, yet its physiological role remains unclear. Cell surface iodination assays and mass spectrometry of major histocompatibility complex class II–eluted peptides show that DO affects the antigenic peptide repertoire of class II. DO generates both quantitative and qualitative differences, and inhibits presentation of large-sized peptides. DO function was investigated under various pH conditions in in vitro peptide exchange assays and in antigen presentation assays using DO− and DO+ transfectant cell lines as antigen-presenting cells, in which effective acidification of the endocytic pathway was prevented with bafilomycin A1, an inhibitor of vacuolar ATPases. DO effectively inhibits antigen presentation of peptides that are loaded onto class II in endosomal compartments that are not very acidic. Thus, DO appears to be a unique, cell type–specific modulator mastering the class II–mediated immune response induced by B cells. DO may serve to increase the threshold for nonspecific B cell activation, restricting class II–peptide binding to late endosomal compartments, thereby affecting the peptide repertoire

    Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis

    Full text link
    By using the wavelet transformation (WT), we have analyzed the response of an ensemble of NN (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it transient} MM-pulse spike trains (M=1−3M=1-3) with independent Gaussian noises. The cross-correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the {\it denoising} method within the WT, by which the noise contribution is extracted from output signals. Although the response of a single (N=1) neuron to sub-threshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross-correlation and SNR is shown to be much improved by increasing the value of NN: a population of neurons play an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for supra-threshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure

    The effect of thermal dose on hyperthermia-mediated inhibition of DNA repair through homologous recombination

    Get PDF
    Hyperthermia has a number of biological effects that sensitize tumors to radiotherapy in the range between 40-44 °C. One of these effects is heat-induced degradation of BRCA2 that in turn causes reduced RAD51 focus formation, which results in an attenuation of DNA repair through homologous recombination. Prompted by this molecular insight into how hyperthermia attenuates homologous recombination, we now quantitatively explore time and temperature dynamics of hyperthermia on BRCA2 levels and RAD51 focus formation in cell culture models, and link this to their clonogenic survival capacity after irradiation (0-6 Gy). For treatment temperatures above 41 °C, we found a decrease in cell survival, an increase in sensitization towards irradiation, a decrease of BRCA2 protein levels, and altered RAD51 focus formation. When the temperatures exceeded 43 °C, we found that hyperthermia alone killed more cells directly, and that processes other than homologous recombination were affected by the heat. This study demonstrates that optimal inhibition of HR is achieved by subjecting cells to hyperthermia at 41-43 °C for 30 to 60 minutes. Our data provides a guideline for the clinical application of novel combination treatments that could exploit hyperthermia's attenuation of homologous recombination, such as the combination of hyperthermia with PARP-inhibitors for non-BRCA mutations carriers
    • …
    corecore