1,197 research outputs found
Weak order for the discretization of the stochastic heat equation driven by impulsive noise
Considering a linear parabolic stochastic partial differential equation
driven by impulsive space time noise, dX_t+AX_t dt= Q^{1/2}dZ_t, X_0=x_0\in H,
t\in [0,T], we approximate the distribution of X_T. (Z_t)_{t\in[0,T]} is an
impulsive cylindrical process and Q describes the spatial covariance structure
of the noise; Tr(A^{-\alpha})0 and A^\beta Q is bounded
for some \beta\in(\alpha-1,\alpha]. A discretization
(X_h^n)_{n\in\{0,1,...,N\}} is defined via the finite element method in space
(parameter h>0) and a \theta-method in time (parameter \Delta t=T/N). For
\phi\in C^2_b(H;R) we show an integral representation for the error
|E\phi(X^N_h)-E\phi(X_T)| and prove that
|E\phi(X^N_h)-E\phi(X_T)|=O(h^{2\gamma}+(\Delta t)^{\gamma}) where
\gamma<1-\alpha+\beta.Comment: 29 pages; Section 1 extended, new results in Appendix
On the Alekseev-Gr\"obner formula in Banach spaces
The Alekseev-Gr\"obner formula is a well known tool in numerical analysis for
describing the effect that a perturbation of an ordinary differential equation
(ODE) has on its solution. In this article we provide an extension of the
Alekseev-Gr\"obner formula for Banach space valued ODEs under, loosely
speaking, mild conditions on the perturbation of the considered ODEs.Comment: 36 page
Stochastic fiber dynamics in a spatially semi-discrete setting
We investigate a spatially discrete surrogate model for the dynamics of a
slender, elastic, inextensible fiber in turbulent flows. Deduced from a
continuous space-time beam model for which no solution theory is available, it
consists of a high-dimensional second order stochastic differential equation in
time with a nonlinear algebraic constraint and an associated Lagrange
multiplier term. We establish a suitable framework for the rigorous formulation
and analysis of the semi-discrete model and prove existence and uniqueness of a
global strong solution. The proof is based on an explicit representation of the
Lagrange multiplier and on the observation that the obtained explicit drift
term in the equation satisfies a one-sided linear growth condition on the
constraint manifold. The theoretical analysis is complemented by numerical
studies concerning the time discretization of our model. The performance of
implicit Euler-type methods can be improved when using the explicit
representation of the Lagrange multiplier to compute refined initial estimates
for the Newton method applied in each time step.Comment: 20 pages; typos removed, references adde
- …