5,045 research outputs found
Studies of thermionic materials for space power applications informal monthly report, sep. 1 - sep. 30, 1963
Thermionic materials for space power application - uranium carbide-zirconium carbide fuels and tungsten claddin
Studies of thermionic materials for space power applications informal monthly report, oct. 1 - oct. 31, 1963
Thermionic space power material - isostatic pressing, vapor deposited tungsten, high temperature properties, cesium thermionic cell life testing, and irradiation studie
A Bose-Einstein Approach to the Random Partitioning of an Integer
Consider N equally-spaced points on a circle of circumference N. Choose at
random n points out of on this circle and append clockwise an arc of
integral length k to each such point. The resulting random set is made of a
random number of connected components. Questions such as the evaluation of the
probability of random covering and parking configurations, number and length of
the gaps are addressed. They are the discrete versions of similar problems
raised in the continuum. For each value of k, asymptotic results are presented
when n,N both go to infinity according to two different regimes. This model may
equivalently be viewed as a random partitioning problem of N items into n
recipients. A grand-canonical balls in boxes approach is also supplied, giving
some insight into the multiplicities of the box filling amounts or spacings.
The latter model is a k-nearest neighbor random graph with N vertices and kn
edges. We shall also briefly consider the covering problem in the context of a
random graph model with N vertices and n (out-degree 1) edges whose endpoints
are no more bound to be neighbors
Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation
The connection between many-body theory (MBPT)--in perturbative and
non-perturbative form--and quantum-electrodynamics (QED) is reviewed for
systems of two fermions in an external field. The treatment is mainly based
upon the recently developed covariant-evolution-operator method for QED
calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a
structure quite akin to that of many-body perturbation theory. At the same time
this procedure is closely connected to the S-matrix and the Green's-function
formalisms and can therefore serve as a bridge between various approaches. It
is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to
a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A
Bloch equation in commutator form that can be used for an "extended" or
quasi-degenerate model space is derived. It has the same relation to the BS
equation as has the standard Bloch equation to the ordinary Schroedinger
equation and can be used to generate a perturbation expansion compatible with
the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic
GaAs Nanowire pn-Junctions Produced by Low-Cost and High-Throughput Aerotaxy
Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost. So far, pn-junctions, a crucial element of solar cells and light-emitting diodes, have not been realized by Aerotaxy growth. Here we report a further development of the Aerotaxy method and demonstrate the growth of GaAs nanowire pn-junctions. Our Aerotaxy system uses an aerosol generator for producing the catalytic seed particles, together with a growth reactor with multiple consecutive chambers for growth of material with different dopants. We show that the produced nanowire pn-junctions have excellent diode characteristics with a rectification ratio of >105, an ideality factor around 2, and very promising photoresponse. Using electron beam induced current and hyperspectral cathodoluminescence, we determined the location of the pn-junction and show that the grown nanowires have high doping levels, as well as electrical properties and diffusion lengths comparable to nanowires grown using metal organic vapor phase epitaxy. Our findings demonstrate that high-quality GaAs nanowire pn-junctions can be produced using a low-cost technique suitable for mass-production, paving the way for industrial-scale production of nanowire-based solar cells
Orbital Kondo Effect in CeLaB: Scaling Analysis
Peculiarity of the Kondo effect in CeLaB is investigated on
the basis of the scaling equations up to third order. For the case where the
- charge fluctuation enters in addition to the - one, the
effective exchange interaction becomes anisotropic with respect to the orbital
pseudospins which represent the two different orbitals in the ground
state. Because of different characteristic energies for electric and magnetic
tensors, scaling with the single Kondo temperature does not apply to physical
quantities such as the resistivity and magnetic susceptibility. Possibility of
a bizzare phase is pointed out where the RKKY interaction leads to the spin
ordering without orbital ordering. This phase serves as a candidate of the
phase IV which is observed to be isotropic magnetically.Comment: 10 pages, 4 eps figures, submitted to PR
Deuteron Magnetic and Quadrupole Moments with a Poincar\'e Covariant Current Operator in the Front-Form Dynamics
The deuteron magnetic and quadrupole moments are unambiguosly determined
within the front-form Hamiltonian dynamics, by using a new current operator
which fulfills Poincar\'e, parity and time reversal covariance, together with
hermiticity and the continuity equation. For both quantities the usual
disagreement between theoretical and experimental results is largely removed.Comment: To appear in Phys. Rev. Let
A Framework for Successful Research Experiences in the Classroom: Combining the Power of Technology and Mentors
Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of team members. Once teams finalize their research question, they are assigned a mentor. The mentor introduces himself/herself, acknowledges the initial work the team has conducted, and asks a focused question to help open the lines of communication. Students continue to communicate with their mentor throughout their research. As research is completed, teams can share their investigation during a virtual presentation. These live presentations allow students to share their research with their mentor, other scientists, other students, parents, and school administrators. After the initial year of testing this authentic research process, EEAB is working to address the many lessons learned. This will allow the program to refine and improve the overall process in an effort to maximize the benefits. Combined, these powerful strategies provide a successful framework to help teachers enhance the skills and motivation of their students, preparing them to become the next generation of scientists, explorers, and STEM-literate citizens of our nation
Australian journalism students’ professional views and news consumption: results from a representative study
Journalism education's role in shaping students' professional views has been a topic of interest among scholars for the past decade in particular. Increasing numbers of studies are concerned with examining students' backgrounds and views in order to identify what role exposure to the tertiary environment may play in socialising them into the industry. This study reports on the results of the largest survey of Australian journalism students undertaken to date, with a sample size of 1884 students. The study finds that time spent studying journalism appears to be related to changes in role perceptions and news consumption. Final-year students are significantly more likely to support journalism's watchdog role and to reject consumer-oriented and "loyal" roles. They also consume more news than first-year students. On the other hand, journalism education appears to have little impact on views of controversial practices, with only marginal differences between final- and first-year students
Valency of rare earths in RIn3 and RSn3: Ab initio analysis of electric-field gradients
In RIn3 and RSn3 the rare earth (R) is trivalent, except for Eu and Yb, which
are divalent. This was experimentally determined in 1977 by perturbed angular
correlation measurements of the electric-field gradient on a 111Cd impurity. At
that time, the data were interpreted using a point charge model, which is now
known to be unphysical and unreliable. This makes the valency determination
potentially questionable. We revisit these data, and analyze them using ab
initio calculations of the electric-field gradient. From these calculations,
the physical mechanism that is responsible for the influence of the valency on
the electric-field gradient is derived. A generally applicable scheme to
interpret electric-field gradients is used, which in a transparent way
correlates the size of the field gradient with chemical properties of the
system.Comment: 10 page
- …