14 research outputs found

    Association studies on 11 published colorectal cancer risk loci

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer type in the Western world. Over one million patients are diagnosed worldwide yearly. A family history of CRC is a major risk factor for CRC. The total genetic contribution to disease development is estimated to be 35%. High-risk syndromes caused by known genes such as familial adenomatous polyposis (FAP) and Lynch Syndrome (LS) explain less than 5% of that number. Recently, several genome-wide association studies (GWAS) have independently found numerous loci at which common single-nucleotide polymorphisms (SNPs) modestly influence the risk of developing colorectal cancer. In total, germline mutations in known genes and moderate- and low risk variants are today suggested to explain 10-15% of the total genetic burden. Hence, predisposed genetic factor are still left to be found. The aim of paper I was to investigate if 11 published loci reported to be associated with an increased or decreased risk of colorectal cancer could be confirmed in a Swedish-based cohort. The cohort was composed of 1786 cases and 1749 controls that were genotyped and analyzed statistically. Genotype– phenotype analysis, for all 11 SNPs and sex, age of onset, family history of CRC and tumor location, was performed. Of 11 loci, 5 showed statistically significant odds ratios similar to previously published findings. Most of the remaining loci showed similar OR to previous publications. Four statistically significant genotype–phenotype associations were reported. The aim of paper II was to further study these 11 SNPs and their possible correlation with morphological features in tumors. We analyzed 15 histological features in 1572 CRC cases. Five SNPs showed statistically significant associations with morphological parameters. The parameters were poor differentiation, mucin production, decreased frequency of Crohn-like peritumoral reaction and desmoplastic response. The aim of paper III was to identify new CRC loci using a genome wide linkage analysis. We used 121 non-FAP/LS colorectal cancer families and genotyped 600 subjects using SNP array chips. No statistically significant result was found. However, suggestive linkage was found in the parametric analysis. This was observed in a recessive model for high-risk families, at locus 9q31.1 (HLOD=2.2) and for moderate-risk families, at locus Xp22.33 (LOD=2.2 and HLOD=2.5). Using families with early-onset, recessive analysis suggested one locus on 4p16.3 (LOD=2.2) and one on 17p13.2 (LOD/HLOD=2.0). Our linkage study adds support for the previously suggested region on chromosome 9 and suggests three additional loci to be involved in colorectal cancer risk. It is debated whether CRC is a single entity or two different entities, colon- and rectal cancer. Studies have recognized their molecular differences. The aim of paper IV was to identify novel colon- and rectal loci. We performed a genome wide linkage analysis using 32 colon- and 56 rectal cancer families. No LOD or HLOD score above three was observed. However, results close to three could be demonstrated. A maximum HLOD= 2.49 at locus 6p21.1-p12.1 and HLOD= 2.55 at locus 18p11.2 was observed for the colon- and rectal cancer families respectively. Exome sequencing was done, on colon and rectal patients, in these regions of interest. We report 25 variants mutated in family members on chromosome 6 and 27 variants on chromosome 18. Further studies are ongoing to elucidate the importance of these variants

    Fluorescence in situ hybridisation analysis of chromosomal aberrations in gastric tissue: the potential involvement of Helicobacter pylori

    Get PDF
    In this series of experiments, a novel protocol was developed whereby gastric cells were collected using endoscopic cytology brush techniques, and prepared, such that interphase fluorescence in situ hybridization (FISH) could be performed. In total, 80 distinct histological samples from 37 patients were studied using four chromosome probes (over 32 000 cells analysed). Studies have previously identified abnormalities of these four chromosomes in upper GI tumours. Using premalignant tissues, we aimed to determine how early in Correa's pathway to gastric cancer these chromosome abnormalities occurred. Aneuploidy of chromosomes 4, 8, 20 and 17(p53) was detected in histologically normal gastric mucosa, as well as in gastritis, intestinal metaplasia, dysplasia and cancer samples. The levels of aneuploidy increased as disease severity increased. Amplification of chromosome 4 and chromosome 20, and deletion of chromosome 17(p53) were the more common findings. Hence, a role for these abnormalities may exist in the initiation of, and the progression to, gastric cancer. Helicobactor pylori infection was determined in premalignant tissue using histological analysis and PCR technology. Detection rates were comparable. PCR was used to subtype H. pylori for CagA status. The amplification of chromosome 4 in gastric tissue was significantly more prevalent in H. pylori-positive patients (n=7) compared to H. pylori-negative patients (n=11), possibly reflecting a role for chromosome 4 amplification in H. pylori-induced gastric cancer. The more virulent CagA strain of H. pylori was associated with increased disease pathology and chromosomal abnormalities, although numbers were small (CagA+ n=3, CagA− n=4). Finally, in vitro work demonstrated that the aneuploidy induced in a human cell line after exposure to the reactive oxygen species (ROS) hydrogen peroxide was similar to that already shown in the gastric cancer pathway, and may further strengthen the hypothesis that H. pylori causes gastric cancer progression via an ROS-mediated mechanism
    corecore