1,594 research outputs found

    Effects of internal fluctuations on the spreading of Hantavirus

    Full text link
    We study the spread of Hantavirus over a host population of deer mice using a population dynamics model. We show that taking into account the internal fluctuations in the mouse population due to its discrete character strongly alters the behaviour of the system. In addition to the familiar transition present in the deterministic model, the inclusion of internal fluctuations leads to the emergence of an additional deterministically hidden transition. We determine parameter values that lead to maximal propagation of the disease, and discuss some implications for disease prevention policies

    Velocity Distribution in a Viscous Granular Gas

    Full text link
    We investigate the velocity relaxation of a viscous one-dimensional granular gas, that is, one in which neither energy nor momentum is conserved in a collision. Of interest is the distribution of velocities in the gas as it cools, and the time dependence of the relaxation behavior. A Boltzmann equation of instantaneous binary collisions leads to a two-peaked distribution with each peak relaxing to zero velocity as 1/t while each peak also narrows as 1/t. Numerical simulations of grains on a line also lead to a double-peaked distribution that narrows as 1/t. A Maxwell approximation leads to a single-peaked distribution about zero velocity with power-law wings. This distribution narrows exponentially. In either case, the relaxing distribution is not of Maxwell-Boltzmann form

    Bullying and Victimization in Elementary Schools: A Comparison of Bullies, Victims, Bully/Victims, and Uninvolved Preadolescents

    Get PDF
    Research on bullying and victimization largely rests on univariate analyses and on reports from a single informant. Researchers may thus know too little about the simultaneous effects of various independent and dependent variables, and their research may be biased by shared method variance. The database for this Dutch study was large (N = 1,065) and rich enough to allow multivariate analysis and multisource information. In addition, the effect of familial vulnerability for internalizing and externalizing disorders was studied. Gender, aggressiveness, isolation, and dislikability were most strongly related to bullying and victimization. Among the many findings that deviated from or enhanced the univariate knowledge base were that not only victims and bully/victims but bullies as well were disliked and that parenting was unrelated to bullying and victimization once other factors were controlled.

    Pulse propagation in decorated granular chains: An analytical approach

    Get PDF
    We study pulse propagation in one-dimensional chains of spherical granules decorated with small grains placed between large granules. The effect of the small granules can be captured by replacing the decorated chains by undecorated chains of large granules of appropriately renormalized mass and effective interaction between the large granules. This allows us to obtain simple analytic expressions for the pulse propagation properties using a generalization of the binary collision approximation introduced in our earlier work [Phys. Rev. E in print (2009); Phys. Rev. E {\bf 69}, 037601 (2004)]Comment: 10 pages and 12 figure

    Observation of two-wave structure in strongly nonlinear dissipative granular chains

    Full text link
    In a strongly nonlinear viscous granular chain under conditions of loading that exclude stationary waves (e.g., impact by a single grain) we observe a pulse that consists of two interconnected but distinct parts. One is a leading narrow "primary pulse" with properties similar to a solitary wave in a "sonic vacuum." It arises from strong nonlinearity and discreteness in the absence of dissipation, but now decays due to viscosity. The other is a broad, much more persistent shock-like "secondary pulse" trailing the primary pulse and caused by viscous dissipation. The medium behind the primary pulse is transformed from a "sonic vacuum" to a medium with finite sound speed. When the rapidly decaying primary pulse dies, the secondary pulse continues to propagate in the "sonic vacuum," with an oscillatory front if the viscosity is relatively small, until its eventual (but very slow) disintegration. Beyond a critical viscosity there is no separation of the two pulses, and the dissipation and nonlinearity dominate the shock-like attenuating pulse which now exhibits a nonoscillatory front

    Thermoelectric efficiency at maximum power in a quantum dot

    Get PDF
    We identify the operational conditions for maximum power of a nanothermoelectric engine consisting of a single quantum level embedded between two leads at different temperatures and chemical potentials. The corresponding thermodynamic efficiency agrees with the Curzon-Ahlborn expression up to quadratic terms in the gradients, supporting the thesis of universality beyond linear response.Comment: 4 pages, 3 figure

    Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators

    Full text link
    We investigate both continuous (second-order) and discontinuous (first-order) transitions to macroscopic synchronization within a single class of discrete, stochastic (globally) phase-coupled oscillators. We provide analytical and numerical evidence that the continuity of the transition depends on the coupling coefficients and, in some nonuniform populations, on the degree of quenched disorder. Hence, in a relatively simple setting this class of models exhibits the qualitative behaviors characteristic of a variety of considerably more complicated models. In addition, we study the microscopic basis of synchronization above threshold and detail the counterintuitive subtleties relating measurements of time averaged frequencies and mean field oscillations. Most notably, we observe a state of suprathreshold partial synchronization in which time-averaged frequency measurements from individual oscillators do not correspond to the frequency of macroscopic oscillations observed in the population

    Geotechnical Prediction and Performance of Eastern Scheldt Storm Surge Barrier

    Get PDF
    The construction of the Eastern Scheldt storm surge barrier was completed in 1986. The monitoring system meant to verify the functioning of the barrier during storm conditions became operational in 1988. Data concerning the geotechnical response was collected during the 4 days storm period between February 26 and March 2, 1990. In the paper some results are described. Conclusions with respect to the expected behaviour of the barrier during more extreme storms in future will be drawn in near future

    Survival probability of a particle in a sea of mobile traps: A tale of tails

    Full text link
    We study the long-time tails of the survival probability P(t)P(t) of an AA particle diffusing in dd-dimensional media in the presence of a concentration ρ\rho of traps BB that move sub-diffusively, such that the mean square displacement of each trap grows as tγt^{\gamma} with 0γ10\leq \gamma \leq 1. Starting from a continuous time random walk (CTRW) description of the motion of the particle and of the traps, we derive lower and upper bounds for P(t)P(t) and show that for γ2/(d+2)\gamma \leq 2/(d+2) these bounds coincide asymptotically, thus determining asymptotically exact results. The asymptotic decay law in this regime is exactly that obtained for immobile traps. This means that for sufficiently subdiffusive traps, the moving AA particle sees the traps as essentially immobile, and Lifshitz or trapping tails remain unchanged. For γ>2/(d+2)\gamma > 2/(d+2) and d2d\leq 2 the upper and lower bounds again coincide, leading to a decay law equal to that of a stationary particle. Thus, in this regime the moving traps see the particle as essentially immobile. For d>2d>2, however, the upper and lower bounds in this γ\gamma regime no longer coincide and the decay law for the survival probability of the AA particle remains ambiguous
    corecore