3,894 research outputs found

    Neural coding of human values is underpinned by brain areas representing the core self in the cortical midline region

    Get PDF
    The impact of human values on our choices depends on their nature. Self-Transcendence values motivate us to act for the benefit of others and care for the environment. Self-Enhancement values motivate us to act for our benefit. The present study examines differences in the neural processes underlying these two value domains. Extending our previous research, we used fMRI to explore first of all neural correlates of Self-Transcendence vs Self-Enhancement values, with a particular focus on the putative role of the medial prefrontal cortex (MPFC), which has been linked to a self-transcendent mind-set. Additionally, we investigated the neural basis of Openness to Change vs Conservation values. We asked participants to reflect on and rate values as guiding principles in their lives while undergoing fMRI. Mental processing of Self-Transcendence values was associated with higher brain activity in the dorsomedial (BA9, BA8) and ventromedial (BA10) prefrontal cortices, as compared to Self-Enhancement values. The former involved activation and the latter deactivation of those regions. We did not detect differences in brain activation between Openness to Change vs Conservation values. Self-Transcendence values thus shared brain regions with social processes that have previously been linked to a self-transcendent mind-set, and the “core self” representation.</p

    Robust Weak-lensing Mass Calibration of Planck Galaxy Clusters

    Full text link
    In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of \left = 0.688 \pm 0.072. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of <MPlanck/MWtG>=0.698±0.062\left< M_{Planck}/M_{\rm WtG} \right> = 0.698 \pm 0.062 from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are 1.6σ\sim 1.6\sigma lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for "new physics" such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.Comment: 5 pages, 2 figure

    NMR quantum computation with indirectly coupled gates

    Full text link
    An NMR realization of a two-qubit quantum gate which processes quantum information indirectly via couplings to a spectator qubit is presented in the context of the Deutsch-Jozsa algorithm. This enables a successful comprehensive NMR implementation of the Deutsch-Jozsa algorithm for functions with three argument bits and demonstrates a technique essential for multi-qubit quantum computation.Comment: 9 pages, 2 figures. 10 additional figures illustrating output spectr

    The effects of quality of evidence communication on perception of public health information about COVID-19: Two randomised controlled trials.

    Get PDF
    BACKGROUND: The quality of evidence about the effectiveness of non-pharmaceutical health interventions is often low, but little is known about the effects of communicating indications of evidence quality to the public. METHODS: In two blinded, randomised, controlled, online experiments, US participants (total n = 2140) were shown one of several versions of an infographic illustrating the effectiveness of eye protection in reducing COVID-19 transmission. Their trust in the information, understanding, feelings of effectiveness of eye protection, and the likelihood of them adopting it were measured. FINDINGS: Compared to those given no quality cues, participants who were told the quality of the evidence on eye protection was 'low', rated the evidence less trustworthy (p = .001, d = 0.25), and rated it as subjectively less effective (p = .018, d = 0.19). The same effects emerged compared to those who were told the quality of the evidence was 'high', and in one of the two studies, those shown 'low' quality of evidence said they were less likely to use eye protection (p = .005, d = 0.18). Participants who were told the quality of the evidence was 'high' showed no statistically significant differences on these measures compared to those given no information about evidence quality. CONCLUSIONS: Without quality of evidence cues, participants responded to the evidence about the public health intervention as if it was high quality and this affected their subjective perceptions of its efficacy and trust in the provided information. This raises the ethical dilemma of weighing the importance of transparently stating when the evidence base is actually low quality against evidence that providing such information can decrease trust, perception of intervention efficacy, and likelihood of adopting it

    Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints

    Full text link
    We present cosmological constraints from measurements of the gas mass fraction, fgasf_{gas}, for massive, dynamically relaxed galaxy clusters. Our data set consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive, as well as high-quality weak gravitational lensing data for a subset of these clusters. Incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, significantly reduces systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgasf_{gas}, (7.4±2.3)(7.4\pm2.3)% in a spherical shell at radii 0.8-1.2 r2500r_{2500}, consistent with the expected variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest-redshift data in our sample we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, h3/2Ωb/Ωm=0.089±0.012h^{3/2}\Omega_b/\Omega_m=0.089\pm0.012, that is insensitive to the nature of dark energy. Combined with standard priors on hh and Ωbh2\Omega_b h^2, this provides a tight constraint on the cosmic matter density, Ωm=0.27±0.04\Omega_m=0.27\pm0.04, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to z>1z>1, we obtain consistent results for Ωm\Omega_m and interesting constraints on dark energy: ΩΛ=0.650.22+0.17\Omega_\Lambda=0.65^{+0.17}_{-0.22} for non-flat Λ\LambdaCDM models, and w=0.98±0.26w=-0.98\pm0.26 for flat constant-ww models. Our results are both competitive and consistent with those from recent CMB, SNIa and BAO data. We present constraints on models of evolving dark energy from the combination of fgasf_{gas} data with these external data sets, and comment on the possibilities for improved fgasf_{gas} constraints using current and next-generation X-ray observatories and lensing data. (Abridged)Comment: 25 pages, 14 figures, 8 tables. Accepted by MNRAS. Code and data can be downloaded from http://www.slac.stanford.edu/~amantz/work/fgas14/ . v2: minor fix to table 1, updated bibliograph

    Functional magnetic resonance imaging neurofeedback-guided motor imagery training and motor training for Parkinson's Disease: randomized trial

    Get PDF
    Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behavior and clinical symptoms. The objective was to determine the effect of NF and motor training (MOT) alone on motor and non-motor functions in Parkinson’s Disease (PD) in a 10-week small Phase I randomized controlled trial. Methods: Thirty patients with Parkinson’s disease (PD; Hoehn and Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with MOT. Group 2 (MOT: 15 patients) received MOT alone. The primary outcome measure was the Movement Disorder Society—Unified PD Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention “off-medication”. The secondary outcome measures were the “on-medication” MDS-UPDRS, the PD Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area (SMA) by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the “off-medication” state (95% confidence interval: −2.5 to −6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to −6.8). The improvement in the intervention group meets the minimal clinically important difference which is also on par with other non-invasive therapies such as repetitive Transcranial Magnetic Stimulation (rTMS). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with MOT is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions
    corecore