3,303 research outputs found

    Semântica para Pejorativos: Contra-argumentos à Inocência Semântica

    Get PDF
    The pejorative have been the object of a growing literature in philosophy. Hom and May (2013) defend the Semantic Innocence thesis to explain a depreciative force of the pejoratives, receiving attacks from Sennet and Copp (2014). The purpose of this article is to present contributions to this discussion, defending the Semantic Innocence thesis of the attacks received from Sennet and Copp (2014), but presenting a new argument against its pretensions, showing that the Semantic Innocence thesis fails to recognize the derogatory character of insults whose neutral counterpart is false

    Anti-apoptotic signaling by the interleukin-2 receptor reveals a function for cytoplasmic tyrosine residues within the common gamma (gamma c) receptor subunit

    Get PDF
    The interleukin-2 receptor (IL-2R) is composed of one affinity-modulating subunit (IL-2Ralpha) and two essential signaling subunits (IL-2Rbeta and gammac). Although most known signaling events are mediated through tyrosine residues located within IL-2Rbeta, no functions have yet been ascribed to gammac tyrosine residues. In this study, we describe a role for gammac tyrosines in anti-apoptotic signal transduction. We have shown previously that a tyrosine-deficient IL-2Rbeta chain paired with wild type gammac stimulated enhancement of bcl-2 mRNA in IL-2-dependent T cells, but it was not determined which region of the IL-2R or which pathway was activated to direct this signaling response. Here we show that up-regulation of Bcl-2 by an IL-2R lacking IL-2Rbeta tyrosine residues leads to increased cell survival after cytokine deprivation; strikingly, this survival signal does not occur in the absence of gammac tyrosine residues. These gammac-dependent signals are revealed only in the absence of IL-2Rbeta tyrosines, indicating that the IL-2R engages at least two distinct signaling pathways to regulate apoptosis and Bcl-2 expression. Mechanistically, the gammac-dependent signal requires activation of Janus kinases 1 and 3 and is sensitive to wortmannin, implicating phosphatidylinositol 3-kinase. Consistent with involvement of phosphatidylinositol 3-kinase, Akt can be activated via tyrosine residues on gammac. Thus, gammac mediates an anti-apoptotic signaling pathway through Akt which cooperates with signals from its partner chain, IL-2Rbeta

    Temporal Logic Robustness for General Signal Classes

    Get PDF
    In multi-agent systems, robots transmit their planned trajectories to each other or to a central controller, and each receiver plans its own actions by maximizing a measure of mission satisfaction. For missions expressed in temporal logic, the robustness function plays the role of satisfaction measure. Currently, a Piece-Wise Linear (PWL) or piece-wise constant reconstruction is used at the receiver. This allows an efficient robustness computation algorithm - a.k.a. monitoring - but is not adaptive to the signal class of interest, and does not leverage the compression properties of more general representations. When communication capacity is at a premium, this is a serious bottleneck. In this paper we first show that the robustness computation is significantly affected by how the continuous-time signal is reconstructed from the received samples, which can mean the difference between a successful control and a crash. We show that monitoring general spline-based reconstructions yields a smaller robustness error, and that it can be done with the same time complexity as monitoring the simpler PWL reconstructions. Thus robustness computation can now be adapted to the signal class of interest. We further show that the monitoring error is tightly upper-bounded by the L ∞ signal reconstruction error. We present a (non-linear) L ∞ -based scheme which yields even lower monitoring error than the spline-based schemes (which have the advantage of being faster to compute), and illustrate all results on two case studies. As an application of these results, we show how time-frequency specifications can be efficiently monitored online

    Wall turbulence control

    Get PDF
    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation

    Body mass, diabetes and smoking, and endometrial cancer risk: a follow-up study

    Get PDF
    We examined the relationship of body mass index (BMI), diabetes and smoking to endometrial cancer risk in a cohort of 36 761 Norwegian women during 15.7 years of follow-up. In multivariable analyses of 222 incident cases of endometrial cancer, identified by linkage to the Norwegian Cancer Registry, there was a strong increase in risk with increasing BMI (P-trend <0.001). Compared to the reference (BMI 20–24 kg m−2), the adjusted relative risk (RR) was 0.53 (95% confidence interval (CI): 0.19–1.47) for BMI<20 kg m−2, 4.28 (95% CI: 2.58–7.09) for BMI of 35–39 kg m−2 and 6.36 (95% CI: 3.08–13.16) for BMI⩾40 kg m−2. Women with known diabetes at baseline were at three-fold higher risk (RR 3.13, 95% CI: 1.92–5.11) than those without diabetes; women who reported current smoking at baseline were at reduced risk compared to never smokers (RR 0.55, 95% CI: 0.35–0.86). The strong linear positive association of BMI with endometrial cancer risk and a strongly increased risk among women with diabetes suggest that any increase in body mass in the female population will increase endometrial cancer incidence

    Analysis of Dislocation Mechanism for Melting of Elements: Pressure Dependence

    Full text link
    In the framework of melting as a dislocation-mediated phase transition we derive an equation for the pressure dependence of the melting temperatures of the elements valid up to pressures of order their ambient bulk moduli. Melting curves are calculated for Al, Mg, Ni, Pb, the iron group (Fe, Ru, Os), the chromium group (Cr, Mo, W), the copper group (Cu, Ag, Au), noble gases (Ne, Ar, Kr, Xe, Rn), and six actinides (Am, Cm, Np, Pa, Th, U). These calculated melting curves are in good agreement with existing data. We also discuss the apparent equivalence of our melting relation and the Lindemann criterion, and the lack of the rigorous proof of their equivalence. We show that the would-be mathematical equivalence of both formulas must manifest itself in a new relation between the Gr\"{u}neisen constant, bulk and shear moduli, and the pressure derivative of the shear modulus.Comment: 19 pages, LaTeX, 9 eps figure

    Feeding live prey to zoo animals: response of zoo visitors in Switzerland

    Full text link
    In summer 2007, with the help of a written questionnaire, the attitudes of more than 400 visitors to the zoological garden of Zurich, Switzerland, toward the idea of feeding live insects to lizards, live fish to otters, and live rabbits to tigers were investigated. The majority of Swiss zoo visitors agreed with the idea of feeding live prey (invertebrates and vertebrates) to zoo animals, both off- and on-exhibit, except in the case of feeding live rabbits to tigers on-exhibit. Women and frequent visitors of the zoo disagreed more often with the on-exhibit feeding of live rabbits to tigers. Study participants with a higher level of education were more likely to agree with the idea of feeding live invertebrates and vertebrates to zoo animals off-exhibit. In comparison to an earlier study undertaken in Scotland, zoo visitors in Switzerland were more often in favor of the live feeding of vertebrates. Feeding live prey can counter the loss of hunting skills of carnivores and improve the animals’ well-being. However, feeding enrichments have to strike a balance between optimal living conditions of animals and the quality of visitor experience. Our results show that such a balance can be found, especially when live feeding of mammals is carried out off-exhibit. A good interpretation of food enrichment might help zoos to win more support for the issue, and for re-introduction programs and conservation

    Many-body interactions and melting of colloidal crystals

    Full text link
    We study the melting behavior of charged colloidal crystals, using a simulation technique that combines a continuous mean-field Poisson-Boltzmann description for the microscopic electrolyte ions with a Brownian-dynamics simulation for the mesoscopic colloids. This technique ensures that many-body interactions between the colloids are fully taken into account, and thus allows us to investigate how many-body interactions affect the solid-liquid phase behavior of charged colloids. Using the Lindemann criterion, we determine the melting line in a phase-diagram spanned by the colloidal charge and the salt concentration. We compare our results to predictions based on the established description of colloidal suspensions in terms of pairwise additive Yukawa potentials, and find good agreement at high-salt, but not at low-salt concentration. Analyzing the effective pair-interaction between two colloids in a crystalline environment, we demonstrate that the difference in the melting behavior observed at low salt is due to many-body interactions

    PIH30 SYMPTOMS AND IMPACT OF PREMENSTRUAL DYSPHORIC DISORDER (PMDD): CONCEPTS AND MEASUREMENT

    Get PDF

    Nonlinear instability in flagellar dynamics: a notel modulation mechanism in sperm migration

    Get PDF
    Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve motility. The beating of these organelles, and the corresponding ability to sense, respond to and modulate this beat is central to many processes in health and disease. While the mechanics of flagellum–fluid interaction has been the subject of extensive mathematical studies, these models have been restricted to being geometrically linear or weakly nonlinear, despite the high curvatures observed physiologically. We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that causes profound and complicated changes in the waveform and swimming trajectory, as well as the breakdown of the linear theory. The emergent waveform also induces curved swimming in an otherwise symmetric system, with the swimming trajectory being sensitive to head shape—no signalling or asymmetric forces are required. We conclude that nonlinear models are essential in understanding the flagellar waveform in migratory human sperm; these models will also be invaluable in understanding motile flagella and cilia in other systems
    • …
    corecore