962 research outputs found

    An improved 2.5 GHz electron pump: single-electron transport through shallow-etched point contacts driven by surface acoustic waves

    Full text link
    We present an experimental study of a 2.5 GHz electron pump based on the quantized acoustoelectric current driven by surface acoustic waves (SAWs) through a shallow-etched point contact in a GaAs/AlGaAs heterostructure. At low temperatures and with an additional counter-propagating SAW beam, up to n = 20 current plateaus at I=nef could be resolved, where n is an integer, e the electron charge, and f the SAW frequency. In the best case the accuracy of the first plateau at 0.40 nA was estimated to be dI/I = +/- 25 ppm over 0.25 mV in gate voltage, which is better than previous results.Comment: 11 pages, 4 figure

    Single Wall Carbon Nanotube Weak Links

    Full text link
    We have reproducibly contacted gated single wall carbon nanotubes (SWCNT) to superconducting leads based on niobium. The devices are identified to belong to two transparency regimes: The Coulomb blockade and the Kondo regime. Clear signature of the superconducting leads is observed in both regimes and in the Kondo regime a narrow zero bias peak interpreted as a proximity induced supercurrent persist in Coulomb blockade diamonds with Kondo resonances.Comment: Proceeding for International Symposium on Mesoscopic Superconductivity and Spintronics 2006, NTT BRL, Atsugi, Japa

    Single wall carbon nanotube double quantum dot

    Full text link
    We report on two top-gate defined, coupled quantum dots in a semiconducting single wall carbon nanotube, constituting a tunable double quantum dot system. The single wall carbon nanotubes are contacted by titanium electrodes, and gated by three narrow top-gate electrodes as well as a back-gate. We show that a bias spectroscopy plot on just one of the two quantum dots can be used to extract the addition energy of both quantum dots. Furthermore, honeycomb charge stability diagrams are analyzed by an electrostatic capacitor model that includes cross capacitances, and we extract the coupling energy of the double quantum dot.Comment: Published in Applied Physics Letters 4 December 2006. http://link.aip.org/link/?APL/89/23211

    Critical Current 0-π\pi Transition in Designed Josephson Quantum Dot Junctions

    Full text link
    We report on quantum dot based Josephson junctions designed specifically for measuring the supercurrent. From high-accuracy fitting of the current-voltage characteristics we determine the full magnitude of the supercurrent (critical current). Strong gate modulation of the critical current is observed through several consecutive Coulomb blockade oscillations. The critical current crosses zero close to, but not at, resonance due to the so-called 0-π\pi transition in agreement with a simple theoretical model.Comment: 5 pages, 4 figures, (Supplementary information available at http://www.fys.ku.dk/~hij/public/nl_supp.pdf

    Different quantization mechanisms in single-electron pumps driven by surface acoustic waves

    Full text link
    We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types of quantized steps appear simultaneously though at different current values, as if they were superposed on each other. This could indicate two independent quantization mechanisms for the acoustoelectric current.Comment: 6 pages, 3 figure

    A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor

    Full text link
    We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependence of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects that arise from coherent tunneling of electrons in the dot

    Multiple Andreev reflections in diffusive SNS structures

    Full text link
    We report new measurements on sup-gap energy structure originating from multiple Andreev reflections in mesoscopic SNS junctions. The junctions were fabricated in a planar geometry with high transparency superconducting contacts of Al deposited on highly diffusive and surface d-doped n++-GaAs. For samples with a normal GaAs region of active length 0.3um the Josephson effect with a maximal supercurrent Ic=3mA at T=237mK was observed. The sub-gap structure was observed as a series of local minima in the differential resistance at dc bias voltages V=2D/ne with n=1,2,4 i.e. only the even sub-gap positions. While at V=2D/e (n=1) only one dip is observed, the n=2, and the n=4 sub-gap structures each consists of two separate dips in the differential resistance. The mutual spacing of these two dips is independent of temperature, and the mutual spacing of the n=4 dips is half of the spacing of the n=2 dips. The voltage bias positions of the sub-gap differential resistance minima coincide with the maxima in the oscillation amplitude when a magnetic field is applied in an interferometer configuration, where one of the superconducting electrodes has been replaced by a flux sensitive open loop.Comment: 20 pages, 7 figure

    Kondo physics in tunable semiconductor nanowire quantum dots

    Full text link
    We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.Comment: 4 pages, 4 figure
    corecore