5,132 research outputs found

    Inflation from Extra Dimensions

    Get PDF
    The radial mode of n extra compact dimensions (the radion, b) can cause inflation in theories where the fundamental gravity scale, M, is smaller than the Planck scale M_P. For radion potentials V(b) with a simple polynomial form, to get the observed density perturbations, the energy scale of V(b) must greatly exceed M ~ 1 TeV: V(b)^{1/4} = M_v ~ 10^{-4} M_P. This gives a large radion mass and reheat temperature ~ 10^9 GeV, thus avoiding the moduli problem. Such a value of M_v can be consistent with the classical treatment if the new dimensions started sufficiently small. A new possibility is that b approaches its stable value from above during inflation. The same conclusions about M_v may hold even if inflation is driven by matter fields rather than by the radion.Comment: 4 pages, 4 figures, uses epsf.te

    Inflation and Large Internal Dimensions

    Full text link
    We consider some aspects of inflation in models with large internal dimensions. If inflation occurs on a 3D wall after the stabilization of internal dimensions in the models with low unification scale (M ~ 1 TeV), the inflaton field must be extremely light. This problem may disappear In models with intermediate (M ~10^{11} GeV) to high (M ~ 10^{16} GeV) unification scale. However, in all of these cases the wall inflation does not provide a complete solution to the horizon and flatness problems. To solve them, there must be a stage of inflation in the bulk before the compactification of internal dimensions.Comment: 4 pages, revtex, minor modification

    Quintessence and phantom cosmology with non-minimal derivative coupling

    Get PDF
    We investigate cosmological scenarios with a non-minimal derivative coupling between the scalar field and the curvature, examining both the quintessence and the phantom cases in zero and constant potentials. In general, we find that the universe transits from one de Sitter solution to another, determined by the coupling parameter. Furthermore, according to the parameter choices and without the need for matter, we can obtain a Big Bang, an expanding universe with no beginning, a cosmological turnaround, an eternally contracting universe, a Big Crunch, a Big Rip avoidance and a cosmological bounce. This variety of behaviors reveals the capabilities of the present scenario.Comment: 8 pages, 8 figure

    Phase transition in scalar Ï•4\phi^4-theory beyond the super daisy resummations

    Full text link
    The temperature phase transition in scalar Ï•4(x)\phi^4(x) field theory with spontaneous symmetry breaking is investigated in a partly resummed perturbative approach. The second Legendre transform is used and the resulting gap equation is considered in the extrema of the free energy functional. It is found that the phase transition is of first order in the super daisy as well as in a certain beyond super daisy resummations. No unwanted imaginary parts in the free energy are found but a loss of the smallness of the effective expansion parameter near the phase transition temperature is found in both cases. This means an insufficiency of the resummations or a deficit of the perturbative approach.Comment: 14 page

    Creation of a Compact Topologically Nontrivial Inflationary Universe

    Full text link
    If inflation can occur only at the energy density V much smaller than the Planck density, which is the case for many inflationary models based on string theory, then the probability of quantum creation of a closed or an infinitely large open inflationary universe is exponentially suppressed for all known choices of the wave function of the universe. Meanwhile under certain conditions there is no exponential suppression for creation of topologically nontrivial compact flat or open inflationary universes. This suggests, contrary to the standard textbook lore, that compact flat or open universes with nontrivial topology should be considered a rule rather than an exception.Comment: 9 pages 2 figures, new materials and references adde

    Mutated Hilltop Inflation : A Natural Choice for Early Universe

    Full text link
    We propose a model of inflation with a suitable potential for a single scalar field which falls in the wide class of hilltop inflation. We derive the analytical expressions for most of the physical quantities related to inflation and show that all of them represent the true behavior as required from a model of inflation. We further subject the results to observational verification by formulating the theory of perturbations based on our model followed by an estimation for the values of those observable parameters. Our model is found to be in excellent agreement with observational data. Thus, the features related to the model leads us to infer that this type of hilltop inflation may be a natural choice for explaining the early universe.Comment: 22 pages, 7 figures, 2 tables. Matches published version in JCA

    Topological Inflation in Supergravity

    Full text link
    We investigate a topological inflation model in supergravity. By means of numerical simulations, it is confirmed that topological inflation can take place in supergravity. We also show that the condition for successful inflation depends not only on the vacuum-expectation value (VEV) of inflaton field but also on the form of its K\"ahler potential. In fact, it is found that the required VEV of the inflaton ϕ\phi can be as small as ≃1×MG \simeq 1 \times M_G, where MGM_{G} is the gravitational scale.Comment: 17 pages, 7 figures. To appear in Phys. Rev.

    Susskind's Challenge to the Hartle-Hawking No-Boundary Proposal and Possible Resolutions

    Get PDF
    Given the observed cosmic acceleration, Leonard Susskind has presented the following argument against the Hartle-Hawking no-boundary proposal for the quantum state of the universe: It should most likely lead to a nearly empty large de Sitter universe, rather than to early rapid inflation. Even if one adds the condition of observers, they are most likely to form by quantum fluctuations in de Sitter and therefore not see the structure that we observe. Here I present my own amplified version of this argument and consider possible resolutions, one of which seems to imply that inflation expands the universe to be larger than 10^{10^{10^{122}}} Mpc.Comment: 24 pages, LaTeX, 8 references added and a distinction between Linde's and Vilenkin's tunneling proposal

    Fine tuning of the initial conditions for hybrid inflation

    Get PDF
    We study the evolution of regions of space with various initial field values for a simple theory that can support hybrid inflation. Only very narrow domains within the range of initial field values below the Planck scale lead to the onset of inflation. This implies a severe fine tuning for the initial configuration that will produce inflation.Comment: 11 pages, LaTeX, 8 figures in eps forma

    Cosmological Measures without Volume Weighting

    Full text link
    Many cosmologists (myself included) have advocated volume weighting for the cosmological measure problem, weighting spatial hypersurfaces by their volume. However, this often leads to the Boltzmann brain problem, that almost all observations would be by momentary Boltzmann brains that arise very briefly as quantum fluctuations in the late universe when it has expanded to a huge size, so that our observations (too ordered for Boltzmann brains) would be highly atypical and unlikely. Here it is suggested that volume weighting may be a mistake. Volume averaging is advocated as an alternative. One consequence may be a loss of the argument that eternal inflation gives a nonzero probability that our universe now has infinite volume.Comment: 15 pages, LaTeX, added references for constant-H hypersurfaces and also an idea for minimal-flux hypersurface
    • …
    corecore