6 research outputs found

    Investigating the Efficacy of Adhesive Tape for Drilling Carbon Fibre Reinforced Polymers

    Get PDF
    In the present research work, an effort has been made to explore the potential of using the ad-hesive tapes while drilling CFRPs. The input parameters, such as drill bit diameter, point angle, Scotch tape layers, spindle speed, and feed rate have been studied in response to thrust force, torque, circularity, diameter error, surface roughness, and delamination occurring during drilling. It has been found that the increase in point angle increased the delamination, while increase in Scotch tape layers reduced delamination. The surface roughness decreased with the increase in drill diameter and point angle, while it increased with the speed, feed rate, and tape layer. The best low roughness was obtained at 6 mm diameter, 130° point angle, 0.11 mm/rev feed rate, and 2250 rpm speed at three layers of Scotch tape. The circularity error initially increased with drill bit diameter and point angle, but then decreased sharply with further increase in the drill bit diam-eter. Further, the circularity error has non-linear behavior with the speed, feed rate, and tape layer. Low circularity error has been obtained at 4 mm diameter, 118° point angle, 0.1 mm/rev feed rate, and 2500 RPM speed at three layers of Scotch tape. The low diameter error has been obtained at 6 mm diameter, 130° point angle, 0.12 mm/rev feed rate, and 2500 rpm speed at three layer Scotch tape. From the optical micro-graphs of drilled holes, it has been found that the point angle is one of the most effective process parameters that significantly affects the delamination mech-anism, followed by Scotch tape layers as compared to other parameters such as drill bit diameter, spindle speed, and feed rate

    Investigation of Using Sol-Gel Technology for Corrosion Protection Coating Systems Incorporating Colours and Inhibitors

    No full text
    Corrosion protection coatings need frequent developments to cater to different challenges arising from users. In addition to a long lasting corrosion protection, aesthetic requirements and multi-functional properties by the same coating system are prominent demands to be considered. Productivity is another vital factor to be considered, as there is a thriving demand from users to have more productive coating systems, such as a smaller number of layers in a system. Thus, attention to using different coating technologies is an essential step to fulfil these demands. This work investigates the use of sol-gel technology as a topcoat on a zinc rich primer to form a two-coat system. A colored sol-gel topcoat on a zinc primer was developed as a two-coat system to replace the current three or multi-coat systems to improve productivity while maintaining the sacrificial protective capability. The overall corrosion protection performance together with the color retaining capability was evaluated in this development. As another step forward, the development of sol-gel technology as a topcoat with additional inhibitive corrosion protection was investigated. Two corrosion inhibitors, namely molybdate and cerium(III), were loaded onto suitable inorganic oxide carriers and then incorporated into sol-gel coatings to provide an inhibitive protection other than the barrier protection. The corrosion performance of the coatings was evaluated using electrochemical impedance spectroscopy (EIS). Sol-gel coating with a cerium(III) system attained the highest impedance and proved to be the best candidate. The mechanical and physical properties of the coating systems are tested using international standard methods

    Investigation of Functionally Graded Adherents on Failure of Socket Joint of FRP Composite Tubes

    No full text
    Fiber-reinforced polymer (FRP) matrix materials are quickly being investigated for application in concrete construction repair, reinforcement, and refurbishment. The technology has progressed to the point that its future acceptance is mainly reliant on the availability of established design guidelines based on recognized performance criteria, as well as the cost competitiveness of these technologies in contrast to conventional rehabilitation methods. The goal of this study is to evaluate the different functional grades of adhesives throughout bond length for bonded socket joints of laminated FRP composite pipes. Damage development resistance is high with a functionally graded FRP composite socket joint, as shown. To extend the service life of the structure, the joint designer should use an FRP composite socket joint with a functionally graded adhesive (FGA)
    corecore