12 research outputs found

    Partitioning a weighted partial order

    No full text
    The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wi ≤ wj if i ≺ j. The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is APX-hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instances. 1 1

    Algorithms for some graph theoretical optimization problems

    No full text

    The tool switching problem revisited

    No full text
    In this note we study the tool switching problem with non-uniform tool sizes. More specifically, we consider the problem where the job sequence is given as part of the input. We show that the resulting tooling problem is strongly \u3cbr/\u3eNP-complete, even in case of unit loading and unloading costs. On the other hand, if the capacity of the tool magazine is also given as part of the input, we show that the problem is solvable in polynomial time. These results settle the complexity of a relevant variant of the tool switching problem

    Connectivity Measures for Internet Topologies 1

    No full text
    The topology of the Internet has initially been modelled as an undirected graph, where vertices correspond to so-called Autonomous Systems (ASs), and edges correspond to physical links between pairs of ASs. However, in order to capture the impact of routing policies, it has recently become apparent that one needs to classify the edges according to the existing economic relationships (customer-provider, peer-to-peer or siblings) between the ASs. This leads to a directed graph model in which traffic can be sent only along so-called valley-free paths. Four different algorithms have been proposed in the literature for inferring AS relationships using publicly available data from routing tables. We investigate the differences in the graph models produced by these algorithms, focussing on connectivity measures. To this aim, we compute the maximum number of vertex-disjoint valley-free paths between ASs as well as the size of a minimum cut separating a pair of ASs. Although these problems are solvable in polynomial time for ordinary graphs, they are N P-hard in our setting. We formulate the two problems a

    Robustness of the internet at the topology and routing level

    No full text
    Classical measures of network robustness are the number of disjoint paths between two nodes and the size of a smallest cut separating them. In the Internet, the paths that traffic can take are constrained by the routing policies of the individual autonomous systems (ASs). These policies mainly depend on the economic relationships between ASs, e.g., customer-provider or peer-to-peer. Paths that are consistent with these policies can be modeled as valley-free paths. We give an overview of existing approaches to the inference of AS relationships, and we survey recent results concerning the problem of computing a maximum number of disjoint valley-free paths between two given nodes, and the problem of computing a smallest set of nodes whose removal disconnects two given nodes with respect to all valley-free paths. For both problems, we discuss NP-hardness and inapproximability results, approximation algorithms, and exact algorithms based on branch-and-bound techniques. We also summarize experimental findings that have been obtained with these algorithms in a comparison of different graph models of the AS-level Internet with respect to robustness properties
    corecore