6 research outputs found

    Evaluation of Operative Notes Concerning Laparoscopic Cholecystectomy: Are Standards Being Met?

    Get PDF
    Background - Laparoscopic cholecystectomy (LC) is the most performed minimal invasive surgical procedure and has a relatively high complication rate. As complications are often revealed postoperatively, clear, accurate, and timely written operative notes are important in order to recall the procedure and start follow-up treatment as soon as possible. In addition, the surgeon’s operative notes are important to assure surgical quality and communication with other healthcare providers. The aim of the present study was to assess compliance with the Dutch guidelines for writing operative notes for LC. Methods - Nine hospitals were asked to send 20 successive LC operative notes. All notes were compared to the Dutch guideline by two reviewers and double-checked by a third reviewer. Statistical analyses on the ‘‘not described’’ items were performed. Results - All hospitals participated. Most notes complied with the Dutch guideline (52–69%); 19–30% of items did not comply. Negative scores for all hospitals were found, mainly for lacking a description of the patient’s posture (average 69%), bandage (94%), blood loss (98%), name of the scrub nurse (87%), postoperative conclusion (65%), and postoperative instructions (78%). Furthermore, notes from one community hospital and two teaching hospitals complied significantly less with the guidelines. Conclusions - Operative notes do not always fully comply with the standards set forth in the guidelines published in the Netherlands. This could influence adjuvant treatment and future patient treatment, and it may make operative notes less suitable background for other purposes. Therefore operative note writing should be taught as part of surgical training, definitions should be provided, and procedure-specific guidelines should be established to improve the quality of the operative notes and their use to improve patient safety.Industrial DesignIndustrial Design Engineerin

    Multibody dynamic modeling of the behavior of flexible instruments used in cervical cancer brachytherapy

    Get PDF
    Background: The steep radiation dose gradients in cervical cancer brachytherapy (BT) necessitate a thorough understanding of the behavior of afterloader source cables or needles in the curved channels of (patient-tailored) applicators. Purpose: The purpose of this study is to develop and validate computer models to simulate: (1) BT source positions, and (2) insertion forces of needles in curved applicator channels. The methodology presented can be used to improve the knowledge of instrument behavior in current applicators and aid the development of novel (3D-printed) BT applicators. Methods: For the computer models, BT instruments were discretized in finite elements. Simulations were performed in SPACAR by formulating nodal contact force and motion input models and specifying the instruments’ kinematic and dynamic properties. To evaluate the source cable model, simulated source paths in ring applicators were compared with manufacturer-measured source paths. The impact of discrepancies on the dosimetry was estimated for standard plans. To validate needle models, simulated needle insertion forces in curved channels with varying curvature, torsion, and clearance, were compared with force measurements in dedicated 3D-printed templates. Results: Comparison of simulated with manufacturer-measured source positions showed 0.5–1.2 mm median and &lt;2.0 mm maximum differences, in all but one applicator geometry. The resulting maximum relative dose differences at the lateral surface and at 5 mm depth were 5.5% and 4.7%, respectively. Simulated insertion forces for BT needles in curved channels accurately resembled the forces experimentally obtained by including experimental uncertainties in the simulation. Conclusion: The models developed can accurately predict source positions and insertion forces in BT applicators. Insights from these models can aid novel applicator design with improved motion and force transmission of BT instruments, and contribute to the estimation of overall treatment precision. The methodology presented can be extended to study other applicator geometries, flexible instruments, and afterloading systems.</p

    Multibody dynamic modeling of the behavior of flexible instruments used in cervical cancer brachytherapy

    Get PDF
    Background: The steep radiation dose gradients in cervical cancer brachytherapy (BT) necessitate a thorough understanding of the behavior of afterloader source cables or needles in the curved channels of (patient-tailored) applicators. Purpose: The purpose of this study is to develop and validate computer models to simulate: (1) BT source positions, and (2) insertion forces of needles in curved applicator channels. The methodology presented can be used to improve the knowledge of instrument behavior in current applicators and aid the development of novel (3D-printed) BT applicators. Methods: For the computer models, BT instruments were discretized in finite elements. Simulations were performed in SPACAR by formulating nodal contact force and motion input models and specifying the instruments’ kinematic and dynamic properties. To evaluate the source cable model, simulated source paths in ring applicators were compared with manufacturer-measured source paths. The impact of discrepancies on the dosimetry was estimated for standard plans. To validate needle models, simulated needle insertion forces in curved channels with varying curvature, torsion, and clearance, were compared with force measurements in dedicated 3D-printed templates. Results: Comparison of simulated with manufacturer-measured source positions showed 0.5–1.2 mm median and &lt;2.0 mm maximum differences, in all but one applicator geometry. The resulting maximum relative dose differences at the lateral surface and at 5 mm depth were 5.5% and 4.7%, respectively. Simulated insertion forces for BT needles in curved channels accurately resembled the forces experimentally obtained by including experimental uncertainties in the simulation. Conclusion: The models developed can accurately predict source positions and insertion forces in BT applicators. Insights from these models can aid novel applicator design with improved motion and force transmission of BT instruments, and contribute to the estimation of overall treatment precision. The methodology presented can be extended to study other applicator geometries, flexible instruments, and afterloading systems.</p
    corecore