104 research outputs found
Metastatic basal cell carcinoma caused by carcinoma misdiagnosed as acne - case report and literature review
Basal cell carcinoma can be misdiagnosed as acne; thus, carcinoma should be considered in treatment‐resistant acne. Although rare, neglected basal cell carcinoma increases the risk of metastasis
Waste Management on Fishing Vessels and in Fishing Harbors in the Barents Sea: Gaps in Law, Implementation and Practice
This article aims to map and provide an overview of international, regional, and national law applicable to marine waste in the Barents Sea, and to analyze fishing industry actors’ practices and perceptions of marine waste. We identify gaps between the law and its implementation, enforcement, and practice. The legal framework for marine plastic pollution in the Barents Sea and the Arctic is fragmented and not harmonized. Insufficient waste management facilities and regulations are likely to hinder compliance with existing regulations. There is an urgent need to upgrade the waste management infrastructure for the fishing industry in Norway and in northwest Russia
Salt marsh ecosystem biogeochemical responses to nutrient enrichment : a paired 15N tracer study
Author Posting. © Ecological Society of America, 2009. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 90 (2009): 2535-2546, doi:10.1890/08-1051.1.We compared processing and fate of dissolved NO3− in two New England salt marsh ecosystems, one receiving natural flood tide concentrations of 1–4 μmol NO3−/L and the other receiving experimentally fertilized flood tides containing 70–100 μmol NO3−/L. We conducted simultaneous 15NO3− (isotope) tracer additions from 23 to 28 July 2005 in the reference (8.4 ha) and fertilized (12.4 ha) systems to compare N dynamics and fate. Two full tidal cycles were intensively studied during the paired tracer additions. Resulting mass balances showed that essentially 100% (0.48–0.61 mol NO3-N·ha−1·h−1) of incoming NO3− was assimilated, dissimilated, sorbed, or sedimented (processed) within a few hours in the reference system when NO3− concentrations were 1.3–1.8 μmol/L. In contrast, only 50–60% of incoming NO3− was processed in the fertilized system when NO3− concentrations were 84–96 μmol/L; the remainder was exported in ebb tidewater. Gross NO3− processing was 40 times higher in the fertilized system at 19.34–24.67 mol NO3-N·ha−1·h−1. Dissimilatory nitrate reduction to ammonium was evident in both systems during the first 48 h of the tracer additions but <1% of incoming 15NO3− was exported as 15NH4+. Nitrification rates calculated by 15NO3− dilution were 6.05 and 4.46 mol·ha−1·h−1 in the fertilized system but could not be accurately calculated in the reference system due to rapid (<4 h) NO3− turnover. Over the five-day paired tracer addition, sediments sequestered a small fraction of incoming NO3−, although the efficiency of sequestration was 3.8% in the reference system and 0.7% in the fertilized system. Gross sediment N sequestration rates were similar at 13.5 and 12.6 mol·ha−1·d−1, respectively. Macrophyte NO3− uptake efficiency, based on tracer incorporation in aboveground tissues, was considerably higher in the reference system (16.8%) than the fertilized system (2.6%), although bulk uptake of NO3− by plants was lower in the reference system (1.75 mol NO3−·ha−1·d−1) than the fertilized system (10 mol NO3−·ha−1·d−1). Nitrogen processing efficiency decreased with NO3− load in all pools, suggesting that the nutrient processing capacity of the marsh ecosystem was exceeded in the fertilized marsh.This work was funded by National Science
Foundation Grant DEB 0213767 and OCE 9726921
DIG-MAN: Integration of digital tools into product development and manufacturing education
General objectives of PRODEM education. Teaching of product development requires various digital tools. Nowadays, the digital
tools usually use computers, which have become a standard element of manufacturing
and teaching environments. In this context, an integration of computer-based technologies
in manufacturing environments plays the crucial and main role, allowing to enrich,
accelerate and integrate different production phases such as product development, design,
manufacturing and inspection. Moreover, the digital tools play important role in management
of production. According to Wdowik and Ratnayake (2019 paper: Open Access
Digital Tool’s Application Potential in Technological Process Planning: SMMEs Perspective,
https://doi.org/10.1007/978-3-030-29996-5_36), the digital tools can be divided
into several main groups such as: machine tools and technological equipment (MTE), devices
(D), internet(intranet)-based tools (I), software (S). The groups are presented in
Fig. 1.1. Machine tools and technological equipment group contains all existing machines and
devices which are commonly used in manufacturing and inspection phase. The group is used in
physical shaping of manufactured products, measurement tasks regarding tools and products,
etc. The next group of devices (D) is proposed to separate the newest trends of using mobile
and computer-based technologies such as smartphones or tablets and indicate the necessity
of increased mobility within production sites. The similar need of separation is in the case of
internet(intranet)-based tools which indicate the growing interest in network-based solutions.
Hence, D and I groups are proposed in order to underline the significance of mobility and
networking. These two groups of the digital tools should also be supported in the nearest
future by the use of 5G networks. The last group of software (S) concerns computer software
produced for the aims of manufacturing environments. There is also a possibility to assign the
defined solutions (e.g. computer programs) to more than one group (e.g. program can be assigned
to software and internet-based tools). The main role of tools allocated inside separate
groups is to support employees, managers and customers of manufacturing firms focused on
abovementioned production phases. The digital tools are being developed in order to increase
efficiency of production, quality of manufactured products and accelerate innovation process
as well as comfort of work. Nowadays, digital also means mobile.
Universities (especially technical), which are focused on higher education and research, have
been continuously developing their teaching programmes since the beginning of industry 3.0
era. They need to prepare their alumni for changing environments of manufacturing enterprises
and new challenges such as Industry 4.0 era, digitalization, networking, remote work,
etc. Most of the teaching environments nowadays, especially those in manufacturing engineering
area, are equipped with many digital tools and meet various challenges regarding an
adaptation, a maintenance and a final usage of the digital tools. The application of these tools
in teaching needs a space, staff and supporting infrastructures. Universities adapt their equipment
and infrastructures to local or national needs of enterprises and the teaching content
is usually focused on currently used technologies. Furthermore, research activities support
teaching process by newly developed innovations.
Figure 1.2 presents how different digital tools are used in teaching environments. Teaching
environments are divided into four groups: lecture rooms, computer laboratories, manufacturing
laboratories and industrial environments. The three groups are characteristic in the
case of universities’ infrastructure whilst the fourth one is used for the aims of internships of students or researchers. Nowadays lecture rooms are mainly used for lectures and presentations
which require the direct communication and interaction between teachers and students.
However, such teaching method could also be replaced by the use of remote teaching (e.g.
by the use of e-learning platforms or internet communicators). Unfortunately, remote teaching
leads to limited interaction between people. Nonverbal communication is hence limited.
Computer laboratories (CLs) usually gather students who solve different problems by the use
of software. Most of the CLs enable teachers to display instructions by using projectors. Physical
gathering in one room enables verbal and nonverbal communication between teachers
and students. Manufacturing laboratories are usually used as the demonstrators of real industrial
environments. They are also perfect places for performing of experiments and building
the proficiency in using of infrastructure. The role of manufacturing labs can be divided as:
• places which demonstrate the real industrial environments,
• research sites where new ideas can be developed, improved and tested.
Industrial environment has a crucial role in teaching. It enables an enriched student experience
by providing real industrial challenges and problems
Structural and kinetic basis for heightened immunogenicity of T cell vaccines
Analogue peptides with enhanced binding affinity to major histocompatibility class (MHC) I molecules are currently being used in cancer patients to elicit stronger T cell responses. However, it remains unclear as to how alterations of anchor residues may affect T cell receptor (TCR) recognition. We correlate functional, thermodynamic, and structural parameters of TCR–peptide–MHC binding and demonstrate the effect of anchor residue modifications of the human histocompatibility leukocyte antigens (HLA)–A2 tumor epitope NY–ESO-1157–165–SLLMWITQC on TCR recognition. The crystal structure of the wild-type peptide complexed with a specific TCR shows that TCR binding centers on two prominent, sequential, peptide sidechains, methionine–tryptophan. Cysteine-to-valine substitution at peptide position 9, while optimizing peptide binding to the MHC, repositions the peptide main chain and generates subtly enhanced interactions between the analogue peptide and the TCR. Binding analyses confirm tighter binding of the analogue peptide to HLA–A2 and improved soluble TCR binding. Recognition of analogue peptide stimulates faster polarization of lytic granules to the immunological synapse, reduces dependence on CD8 binding, and induces greater numbers of cross-reactive cytotoxic T lymphocyte to SLLMWITQC. These results provide important insights into heightened immunogenicity of analogue peptides and highlight the importance of incorporating structural data into the process of rational optimization of superagonist peptides for clinical trials
Microbial community composition in sediments resists perturbation by nutrient enrichment
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1540–1548, doi:10.1038/ismej.2011.22.Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.Funding for this research came from NSF(DEB-0717155 to JEH, DBI-0400819 to JLB). Support for the sequencing facility came from NIH and NSF (NIH/NIEHS-P50-ES012742-01 and NSF/OCE 0430724-J Stegeman PI to HGM and MLS, and WM Keck Foundation to MLS). Salary support provided from Princeton University Council on Science and Technology to JLB. Support for development of the functional gene microarray provided by NSF/OCE99-081482 to BBW. The Plum Island fertilization experiment was funded by NSF (DEB 0213767 and DEB 0816963)
Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature
<p>Abstract</p> <p>Background</p> <p>Pierre-Robin sequence (PRS) is defined by micro- and/or retrognathia, glossoptosis and cleft soft palate, either caused by deformational defect or part of a malformation syndrome. Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome caused by mutations in the <it>NF2 </it>gene on chromosome 22q12.2. NF2 is characterized by bilateral vestibular schwannomas, spinal cord schwannomas, meningiomas and ependymomas, and juvenile cataracts. To date, NF2 and PRS have not been described together in the same patient.</p> <p>Case presentation</p> <p>We report a female with PRS (micrognathia, cleft palate), microcephaly, ocular hypertelorism, mental retardation and bilateral hearing loss, who at age 15 was also diagnosed with severe NF2 (bilateral cerebellopontine schwannomas and multiple extramedullary/intradural spine tumors). This is the first published report of an individual with both diagnosed PRS and NF2. High resolution karyotype revealed 46, XX, del(22)(q12.1q12.3), FISH confirmed a deletion encompassing <it>NF2</it>, and chromosomal microarray identified a 3,693 kb deletion encompassing multiple genes including <it>NF2 </it>and <it>MN1 </it>(meningioma 1).</p> <p>Five additional patients with craniofacial dysmorphism and deletion in chromosome 22-adjacent-to or containing <it>NF2 </it>were identified in PubMed and the DECIPHER clinical chromosomal database. Their shared chromosomal deletion encompassed <it>MN1</it>, <it>PITPNB </it>and <it>TTC28</it>. <it>MN1</it>, initially cloned from a patient with meningioma, is an oncogene in murine hematopoiesis and participates as a fusion gene (<it>TEL</it>/<it>MN1</it>) in human myeloid leukemias. Interestingly, <it>Mn1</it>-haploinsufficient mice have abnormal skull development and secondary cleft palate. Additionally, <it>Mn1 </it>regulates maturation and function of calvarial osteoblasts and is an upstream regulator of <it>Tbx22</it>, a gene associated with murine and human cleft palate. This suggests that deletion of <it>MN1 </it>in the six patients we describe may be causally linked to their cleft palates and/or craniofacial abnormalities.</p> <p>Conclusions</p> <p>Thus, our report describes a <it>NF2</it>-adjacent chromosome 22q12.2 deletion syndrome and is the first to report association of <it>MN1 </it>deletion with abnormal craniofacial development and/or cleft palate in humans.</p
Consumption of individual saturated fatty acids and the risk of myocardial infarction in a UK and a Danish cohort
Background: The effect of individual saturated fatty acids (SFAs) on serum cholesterol levels depends on their carbon-chain length. Whether the association with myocardial infarction (MI) also differs across individual SFAs is unclear. We examined the association between consumption of individual SFAs, differing in chain lengths ranging from 4 through 18 carbons, and risk of MI. Methods: We used data from 22,050 and 53,375 participants from EPIC-Norfolk (UK) and EPIC-Denmark, respectively. Baseline SFA intakes were assessed through validated, country-specific food frequency questionnaires. Cox regression analysis was used to estimate associations between intakes of individual SFAs and MI risk, for each cohort separately. Results: During median follow-up times of 18.8 years in EPIC-Norfolk and 13.6 years in Denmark, respectively, 1204 and 2260 MI events occurred. Mean (±SD) total SFA intake was 13.3 (±3.5) en% in EPIC-Norfolk, and 12.5 (±2.6) en% in EPIC-Denmark. After multivariable adjustment, intakes of C12:0 (lauric acid) and C14:0 (myristic acid) inversely associated with MI risk in EPIC-Denmark (HR upper versus lowest quintile: 0.80 (95%CI: 0.66, 0.96) for both SFAs). Intakes in the third and fourth quintiles of C4:0–C10:0 also associated with lower MI risk in EPIC-Denmark. Moreover, substitution of C16:0 (palmitic acid) and C18:0 (stearic acid) with plant proteins resulted in a reduction of MI risk in EPIC-Denmark (HR per 1 energy%: 0.86 (95%CI: 0.78, 0.95) and 0.87 (95%CI: 0.79, 0.96) respectively). No such associations were found in EPIC-Norfolk. Conclusion: The results from the present study suggest that the association between SFA and MI risk depends on the carbon chain-length of the SFA
- …