61 research outputs found

    Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection

    Get PDF
    AbstractGiven the lethality of H5N1 avian influenza viruses (AIV) and the recurring spread from poultry to humans, an effective vaccine against H5N1 viruses may be needed to prevent a pandemic. We generated experimental vaccine vectors based on recombinant vesicular stomatitis virus (VSV) expressing the H5 hemagglutinin (HA) from an H5N1 virus isolated in 1997. The HA gene was expressed either from an attenuated wild-type VSV vector or from a single-cycle vector containing a deletion of the VSV G gene. We found that all of the vectors induced potent neutralizing antibody titers against the homologous and antigenically heterologous H5N1 viruses isolated in 2004 and 2005. Vaccination of mice with any combination of prime or prime/boost vectors provided long-lasting protection (>7 months) against challenge with AIV, even in animals receiving a single dose of single-cycle vaccine. Our data indicate that these recombinants are promising vaccine candidates for pandemic influenza

    Partial efficacy of a VSV-SIV/MVA-SIV vaccine regimen against oral SIV challenge in infant macaques

    Get PDF
    Despite antiretroviral medications, the rate of pediatric HIV-1 infections through breast-milk transmission has been staggering in developing countries. Therefore, the development of a vaccine to protect vulnerable infant populations should be actively pursued. We previously demonstrated that oral immunization of newborn macaques with vesicular stomatitis virus expressing simian immunodeficiency virus genes (VSV-SIV) followed 2 weeks later by an intramuscular boost with modified vaccinia ankara virus expressing SIV (MVA-SIV) successfully induced SIV-specific T and B cell responses in multiple lymphoid tissues, including the tonsil and intestine [13]. In the current study, we tested the oral VSV-SIV prime/systemic MVA-SIV boost vaccine for efficacy against multiple oral SIVmac251 challenges starting two weeks after the booster vaccination. The vaccine did not prevent SIV infection. However, in vaccinated infants, the level of SIV-specific plasma IgA (but not IgG) at the time of challenge was inversely correlated with peak viremia. In addition, the levels of SIV-specific IgA in saliva and plasma were inversely correlated with viral load at euthanasia. Animals with tonsils that contained higher frequencies of SIV-specific TNF-α- or IFN-γ-producing CD8+ T cells and central memory T cells at euthanasia also had lower viremia. Interestingly, a marked depletion of CD25+ FoxP3+ CD4+ T cells was observed in the tonsils as well as the intestine of these animals, implying that T regulatory cells may be a major target of SIV infection in infant macaques. Overall, the data suggest that, in infant macaques orally infected with SIV, the co-induction of local antiviral cytotoxic T cells and T regulatory cells that promote the development of IgA responses may result in better control of viral replication. Thus, future vaccination efforts should be directed towards induction of IgA and mucosal T cell responses to prevent or reduce virus replication in infants

    Role of N-Linked Glycans in a Human Immunodeficiency Virus Envelope Glycoprotein: Effects on Protein Function and the Neutralizing Antibody Response

    No full text
    The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains

    Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    No full text
    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein was deleted and replaced by one or both of the E1G and E2G genes, together with a green fluorescent protein gene. These ΔG viruses incorporated E1G and E2G proteins at levels approximately equivalent to the normal level of VSV G itself, or about 1,200 molecules of each protein per virion. Given the potency of VSV recombinants as vaccines in other studies, this high-level expression and incorporation of HCV proteins into virions could be very important for development of an HCV vaccine. Despite the presence of E1G and E2G proteins at high levels in the virions, these virions did not infect cell lines that have been reported to support at least a low level of HCV infection and replication

    High-Level Primary CD8(+) T-Cell Response to Human Immunodeficiency Virus Type 1 Gag and Env Generated by Vaccination with Recombinant Vesicular Stomatitis Viruses

    No full text
    We investigated the primary cellular immune responses to human immunodeficiency virus type 1 (HIV-1) Env and Gag proteins elicited by recombinant vesicular stomatitis viruses (rVSVs). The primary response to Env peaked 5 to 7 days after intraperitoneal vaccination, at which time 40% of CD8(+) cells were Env tetramer positive and activated (CD62L(Lo)). These freshly isolated cells actively lysed target cells pulsed with the p18-I10 peptide and secreted gamma interferon and tumor necrosis factor alpha after stimulation with the Env p18-I10 peptide. The primary response to Env elicited by rVSVs was sixfold higher than that elicited by recombinant vaccinia viruses (rVVs) at 5 days postvaccination. An intranasal route of vaccination with VSV-Env also elicited a strong primary response to Env. The primary immune response to Gag elicited by rVSV peaked 7 days after vaccination, at which time 3% of CD8(+) cells were Gag tetramer positive and CD62L(Lo) and functional by intracellular cytokine staining. This response was eightfold higher than that elicited by rVV expressing Gag. VSV-GagEnv, which expresses both Gag and Env from a single recombinant, also induced strong cytotoxic T-lymphocyte (CTL) responses to both Env and Gag. Our quantitative analyses illustrate the potency of the VSV vector system in CTL induction
    • …
    corecore