8,421 research outputs found
Diurnal periodicity of activity in the spawning perch P. fluviatilis L. [Translation from: Kalamies 1972(7) 3, 1972]
Diurnal periodicity of spawning in the perch so far are rather meagre and found to be partly contrary to experiences of perch anglers. Therefore a study was made on the spawning during a 5-day period in the spring of 1971 in the Kuusamo area. Observations were made during the main spawning season, between 4- 9 June 1971. The perch were often measured, weighed and then released back into the water. The differences between spawning and non-spawning perch were studied as well as the time of roe discharge in a 24 hour period. Activity and environmental factors such as light intensity were also taken into consideration
Seasonal variation in the diurnal periodicity of activity of the perch, Perca fluviatilis L. [Translation from: Kalamies 1973(3) 3.]
The most common catch of the amateur angler is the perch and it is the diurnal periodicity of activity (& catchability) which is examined in this study based on earlier articles and manuscripts by the authors. Of all environmental factors, variation in light and temperature are the chief reasons in establishing the times of activity periods. Winter, summer and autumn activity was studied. The spawning perch was found to be more active than the non-spawning perch. The time of day in which the fish may be active is dependant on its ability to sense changes in the external environment. Its adaptation to light is the reason for day-activity in the winter, and also accounts for the fact that hardly any activity occurs between sunset and sunrise when this period exceeds 6 hours
Carbon and oxygen in metal-poor halo stars
Carbon and oxygen are key tracers of the Galactic chemical evolution; in
particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor
halo stars could be a signature of nucleosynthesis by massive Population III
stars. We reanalyse carbon, oxygen, and iron abundances in thirty-nine
metal-poor turn-off stars. For the first time, we take into account
three-dimensional (3D) hydrodynamic effects together with departures from local
thermodynamic equilibrium (LTE) when determining both the stellar parameters
and the elemental abundances, by deriving effective temperatures from 3D
non-LTE H profiles, surface gravities from Gaia parallaxes, iron
abundances from 3D LTE Feii equivalent widths, and carbon and oxygen abundances
from 3D non-LTE Ci and Oi equivalent widths. We find that [C/Fe] stays flat
with [Fe/H], whereas [O/Fe] increases linearly up to dex with decreasing
[Fe/H] down to dex. As such [C/O] monotonically decreases towards
decreasing [O/H], in contrast to previous findings, mainly by virtue of less
severe non-LTE effects for Oi at low [Fe/H] with our improved calculations.Comment: 5 pages, 2 figures; published in A&A Letter
Effective temperature determinations of late-type stars based on 3D non-LTE Balmer line formation
Hydrogen Balmer lines are commonly used as spectroscopic effective
temperature diagnostics of late-type stars. However, the absolute accuracy of
classical methods that are based on one-dimensional (1D) hydrostatic model
atmospheres and local thermodynamic equilibrium (LTE) is still unclear. To
investigate this, we carry out 3D non-LTE calculations for the Balmer lines,
performed, for the first time, over an extensive grid of 3D hydrodynamic
STAGGER model atmospheres. For H, H, and H, we find
significant 1D non-LTE versus 3D non-LTE differences (3D effects): the outer
wings tend to be stronger in 3D models, particularly for H, while the
inner wings can be weaker in 3D models, particularly for H. For
H, we also find significant 3D LTE versus 3D non-LTE differences
(non-LTE effects): in warmer stars (K) the inner
wings tend to be weaker in non-LTE models, while at lower effective
temperatures (K) the inner wings can be stronger in
non-LTE models; the non-LTE effects are more severe at lower metallicities. We
test our 3D non-LTE models against observations of well-studied benchmark
stars. For the Sun, we infer concordant effective temperatures from H,
H, and H; however the value is too low by around 50K which could
signal residual modelling shortcomings. For other benchmark stars, our 3D
non-LTE models generally reproduce the effective temperatures to within
uncertainties. For H, the absolute 3D effects and non-LTE
effects can separately reach around 100K, in terms of inferred effective
temperatures. For metal-poor turn-off stars, 1D LTE models of H can
underestimate effective temperatures by around 150K. Our 3D non-LTE model
spectra are publicly available, and can be used for more reliable spectroscopic
effective temperature determinations.Comment: 19 pages, 10 figures, abstract abridged; accepted for publication in
Astronomy & Astrophysic
Searching for optimal variables in real multivariate stochastic data
By implementing a recent technique for the determination of stochastic
eigendirections of two coupled stochastic variables, we investigate the
evolution of fluctuations of NO2 concentrations at two monitoring stations in
the city of Lisbon, Portugal. We analyze the stochastic part of the
measurements recorded at the monitoring stations by means of a method where the
two concentrations are considered as stochastic variables evolving according to
a system of coupled stochastic differential equations. Analysis of their
structure allows for transforming the set of measured variables to a set of
derived variables, one of them with reduced stochasticity. For the specific
case of NO2 concentration measures, the set of derived variables are well
approximated by a global rotation of the original set of measured variables. We
conclude that the stochastic sources at each station are independent from each
other and typically have amplitudes of the order of the deterministic
contributions. Such findings show significant limitations when predicting such
quantities. Still, we briefly discuss how predictive power can be increased in
general in the light of our methods
Scattering by nonspherical systems
Scattering by nonspherical particles with size of order of wavelength - scattering by axisymmetric penetrable particles using approximate matching of boundary condition
Basel II, External Ratings and Adverse Selection
This paper will describe and analyse the development of Basel II Capital Accord and will focus on the use of external ratings in the Standardized Approach in Basel II. Furthermore it will examine the problem of adverse selection which appears in Basel II as a result from the proposal for the use of external ratings in determining the risk weights in the standardized approach. The paper will also attempt to find possible solutions to the adverse selection problem by discussing two similar models, and derive implications from them.Basel II, external ratings, adverse selection, rating agencies, standardized approach
Dynamical and quasistatic structural relaxation paths in Pd_(40)Ni_(40)P_(20) glass
By sequential heat treatment of a Pd_(40)Ni_(40)P_(20) metallic glass at temperatures and durations for which
α-relaxation is not possible, dynamic, and quasistatic relaxation paths below the glass transition are
identified via ex situ ultrasonic measurements following each heat treatment. The dynamic
relaxation paths are associated with hopping between nonequilibrium potential energy states of the
glass, while the quasistatic relaxation path is associated with reversible β-relaxation events toward
quasiequilibrium states. These quasiequilibrium states are identified with secondary potential energy
minima that exist within the inherent energy minimum of the glass, thereby supporting the concept
of the sub-basin/metabasin organization of the potential-energy landscape
The influence of electron collisions on non-LTE Li line formation in stellar atmospheres
The influence of the uncertainties in the rate coefficient data for
electron-impact excitation and ionization on non-LTE Li line formation in cool
stellar atmospheres is investigated. We examine the electron collision data
used in previous non-LTE calculations and compare them to recent calculations
that use convergent close-coupling (CCC) techniques and to our own calculations
using the R-matrix with pseudostates (RMPS) method. We find excellent agreement
between rate coefficients from the CCC and RMPS calculations, and reasonable
agreement between these data and the semi-empirical data used in non-LTE
calculations up to now. The results of non-LTE calculations using the old and
new data sets are compared and only small differences found: about 0.01 dex (~
2%) or less in the abundance corrections. We therefore conclude that the
influence on non-LTE calculations of uncertainties in the electron collision
data is negligible. Indeed, together with the collision data for the charge
exchange process Li(3s) + H Li^+ + H^- now available, and barring the
existence of an unknown important collisional process, the collisional data in
general is not a source of significant uncertainty in non-LTE Li line formation
calculations.Comment: 8 pages, accepted by Astronomy and Astrophysics; Replaced with minor
corrections following proof
- …