7 research outputs found
Are Quantitative Errors Reduced with Time-of-Flight Reconstruction When Using Imperfect MR-Based Attenuation Maps for F-18-FDG PET/MR Neuroimaging?
We studied whether TOF reduces error propagation from attenuation correction to PET image reconstruction in PET/MR neuroimaging, by using imperfect attenuation maps in a clinical PET/MR system with 525 ps timing resolution. Ten subjects who had undergone F-18-FDG PET neuroimaging were included. Attenuation maps using a single value (0.100 cm(-1)) with and without air, and a 3-class attenuation map with soft tissue (0.096 cm(-1)), air and bone (0.151 cm(-1)) were used. CT-based attenuation correction was used as a reference. Volume-of-interest (VOI) analysis was conducted. Mean bias and standard deviation across the brain was studied. Regional correlations and concordance were evaluated. Statistical testing was conducted. Average bias and standard deviation were slightly reduced in the majority (23-26 out of 35) of the VOI with TOF. Bias was reduced near the cortex, nasal sinuses, and in the mid-brain with TOF. Bland-Altman and regression analysis showed small improvements with TOF. However, the overall effect of TOF to quantitative accuracy was small (3% at maximum) and significant only for two attenuation maps out of three at 525 ps timing resolution. In conclusion, TOF might reduce the quantitative errors due to attenuation correction in PET/MR neuroimaging, but this effect needs to be further investigated on systems with better timing resolution.</p
Evaluation of three methods for delineation and attenuation estimation of the sinus region in MR-based attenuation correction for brain PET-MR imaging
Background Attenuation correction is crucial in quantitative positron emission tomography-magnetic resonance (PET-MRI) imaging. We evaluated three methods to improve the segmentation and modelling of the attenuation coefficients in the nasal sinus region. Two methods (cuboid and template method) included a MRI-CT conversion model for assigning the attenuation coefficients in the nasal sinus region, whereas one used fixed attenuation coefficient assignment (bulk method). Methods The study population consisted of data of 10 subjects which had undergone PET-CT and PET-MRI. PET images were reconstructed with and without time-of-flight (TOF) using CT-based attenuation correction (CTAC) as reference. Comparison was done visually, using DICE coefficients, correlation, analyzing attenuation coefficients, and quantitative analysis of PET and bias atlas images. Results The median DICE coefficients were 0.824, 0.853, 0.849 for the bulk, cuboid and template method, respectively. The median attenuation coefficients were 0.0841 cm-1, 0.0876 cm-1, 0.0861 cm-1 and 0.0852 cm-1, for CTAC, bulk, cuboid and template method, respectively. The cuboid and template methods showed error of less than 2.5% in attenuation coefficients. An increased correlation to CTAC was shown with the cuboid and template methods. In the regional analysis, improvement in at least 49% and 80% of VOI was seen with non-TOF and TOF imaging. All methods showed errors less than 2.5% in non-TOF and less than 2% in TOF reconstructions. Conclusions We evaluated two proof-of-concept methods for improving quantitative accuracy in PET/MRI imaging and showed that bias can be further reduced by inclusion of TOF. Largest improvements were seen in the regions of olfactory bulb, Heschl's gyri, lingual gyrus and cerebellar vermis. However, the overall effect of inclusion of the sinus region as separate class in MRAC to PET quantification in the brain was considered modest.</p
Are Quantitative Errors Reduced with Time-of-Flight Reconstruction When Using Imperfect MR-Based Attenuation Maps for 18F-FDG PET/MR Neuroimaging?
We studied whether TOF reduces error propagation from attenuation correction to PET image reconstruction in PET/MR neuroimaging, by using imperfect attenuation maps in a clinical PET/MR system with 525 ps timing resolution. Ten subjects who had undergone 18F-FDG PET neuroimaging were included. Attenuation maps using a single value (0.100 cm−1) with and without air, and a 3-class attenuation map with soft tissue (0.096 cm−1), air and bone (0.151 cm−1) were used. CT-based attenuation correction was used as a reference. Volume-of-interest (VOI) analysis was conducted. Mean bias and standard deviation across the brain was studied. Regional correlations and concordance were evaluated. Statistical testing was conducted. Average bias and standard deviation were slightly reduced in the majority (23–26 out of 35) of the VOI with TOF. Bias was reduced near the cortex, nasal sinuses, and in the mid-brain with TOF. Bland–Altman and regression analysis showed small improvements with TOF. However, the overall effect of TOF to quantitative accuracy was small (3% at maximum) and significant only for two attenuation maps out of three at 525 ps timing resolution. In conclusion, TOF might reduce the quantitative errors due to attenuation correction in PET/MR neuroimaging, but this effect needs to be further investigated on systems with better timing resolution
Are Quantitative Errors Reduced with Time-of-Flight Reconstruction When Using Imperfect MR-Based Attenuation Maps for <sup>18</sup>F-FDG PET/MR Neuroimaging?
We studied whether TOF reduces error propagation from attenuation correction to PET image reconstruction in PET/MR neuroimaging, by using imperfect attenuation maps in a clinical PET/MR system with 525 ps timing resolution. Ten subjects who had undergone 18F-FDG PET neuroimaging were included. Attenuation maps using a single value (0.100 cmâ1) with and without air, and a 3-class attenuation map with soft tissue (0.096 cmâ1), air and bone (0.151 cmâ1) were used. CT-based attenuation correction was used as a reference. Volume-of-interest (VOI) analysis was conducted. Mean bias and standard deviation across the brain was studied. Regional correlations and concordance were evaluated. Statistical testing was conducted. Average bias and standard deviation were slightly reduced in the majority (23â26 out of 35) of the VOI with TOF. Bias was reduced near the cortex, nasal sinuses, and in the mid-brain with TOF. BlandâAltman and regression analysis showed small improvements with TOF. However, the overall effect of TOF to quantitative accuracy was small (3% at maximum) and significant only for two attenuation maps out of three at 525 ps timing resolution. In conclusion, TOF might reduce the quantitative errors due to attenuation correction in PET/MR neuroimaging, but this effect needs to be further investigated on systems with better timing resolution