7 research outputs found
Hausdorff dimension of operator semistable L\'evy processes
Let be an operator semistable L\'evy process in \rd
with exponent , where is an invertible linear operator on \rd and
is semi-selfsimilar with respect to . By refining arguments given in
Meerschaert and Xiao \cite{MX} for the special case of an operator stable
(selfsimilar) L\'evy process, for an arbitrary Borel set B\subseteq\rr_+ we
determine the Hausdorff dimension of the partial range in terms of the
real parts of the eigenvalues of and the Hausdorff dimension of .Comment: 23 page