3 research outputs found
Self-reported DHA supplementation during pregnancy and its association with obesity or gestational diabetes in relation to DHA concentration in cord and maternal plasma: results from NELA, a prospective mother-offspring cohort.
©2021. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/
This document is the Published, version of a Published Work that appeared in final form in Nutrients. To access the final edited and published work see https://doi.org/10.3390/nu13030843Maternal supplementation of docosahexaenoic acid (DHA) during pregnancy has been recommended due to its role in infant development, but its effect on materno-fetal DHA status is not well established. We evaluated the associations between DHA supplementation in pregnant women with obesity or gestational diabetes mellitus (GDM) and maternal and neonatal DHA status. Serum fatty acids (FA) were analyzed in 641 pregnant women (24 weeks of gestation) and in 345 venous and 166 arterial cord blood samples of participants of the NELA cohort. Obese women (n = 47) presented lower DHA in serum than those lean (n = 397) or overweight (n = 116) before pregnancy. Linoleic acid in arterial cord was elevated in obese women, which indicates lower fetal retention. Maternal DHA supplementation (200 mg/d) during pregnancy was associated with enhanced maternal and fetal DHA levels regardless of pre-pregnancy body mass index (BMI), although higher arterial DHA in overweight women indicated an attenuated response. Maternal DHA supplementation was not associated with cord venous DHA in neonates of mothers with GDM. The cord arteriovenous difference was similar for DHA between GDM and controls. In conclusion, maternal DHA supplementation during pregnancy enhanced fetal DHA status regardless of the pre-pregnancy BMI while GDM may reduce the effect of DHA supplementation in newborns
Dietary Patterns in Pregnancy and Biomarkers of Oxidative Stress in Mothers and Offspring: The NELA Birth Cohort
©. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Published, version of a Published Work that appeared in final form in Frontiers in nutrition. To access the final edited and published work see https://doi.org/10.3389/fnut.2022.869357Background: Although adherence to the Mediterranean and antioxidant-rich diets during pregnancy is suggested to improve maternal-fetal health by reducing oxidative stress, yet there is no study available.
Objective: We examined whether maternal dietary patterns in pregnancy impact the biomarkers of oxidative stress in mothers and their offspring.
Methods: Study population included 642 mothers and 335 newborns of the "Nutrition in Early Life and Asthma" (NELA) birth cohort. Maternal diet during pregnancy was assessed by a validated food frequency questionnaire and a priori-defined dietary indices (relative Mediterranean Diet [rMED], alternative Mediterranean Diet [aMED], Dietary Approach to Stop Hypertension [DASH], Alternate Healthy Index [AHEI], and AHEI-2010) were calculated. Biomarkers measured were: hydroperoxides, carbonyl groups, and 8-hydroxydeoxyguanosine (8OHdG) determined in maternal blood and newborn cord blood, and urinary maternal and offspring 15-F2t-isoprostane. Multivariate linear regression models were performed.
Results: Maternal rMED score was inversely associated with the maternal levels of 8OHdG at mid-pregnancy (beta per 1-point increase = -1.61; 95% CI -2.82, -0.39) and the newborn levels of hydroperoxides (beta per 1-point increase = -4.54; 95% CI -9.32, 0.25). High vs. low maternal rMED score was marginally associated with the decreased levels of 8OHdG in newborns (beta = -9.17; 95% CI -19.9, 1.63; p for trend 0.079). Maternal DASH score tended to be inversely associated with maternal urinary 15-F2t-isoprostane (beta per 1-point increase = -0.69; 95% CI, -1.44, 0.06). High vs. low maternal AHEI score was associated with reduced offspring urinary levels of 15-F2t-isoprostane (beta = -20.2; 95% CI -38.0, -2.46; p for trend 0.026).
Conclusion: These results suggest that maternal adherence to healthy dietary patterns during pregnancy may reduce DNA damage and lipid oxidation in mothers and offspring
Self-Reported DHA Supplementation during Pregnancy and Its Association with Obesity or Gestational Diabetes in Relation to DHA Concentration in Cord and Maternal Plasma: Results from NELA, a Prospective Mother-Offspring Cohort
Maternal supplementation of docosahexaenoic acid (DHA) during pregnancy has been recommended due to its role in infant development, but its effect on materno-fetal DHA status is not well established. We evaluated the associations between DHA supplementation in pregnant women with obesity or gestational diabetes mellitus (GDM) and maternal and neonatal DHA status. Serum fatty acids (FA) were analyzed in 641 pregnant women (24 weeks of gestation) and in 345 venous and 166 arterial cord blood samples of participants of the NELA cohort. Obese women (n = 47) presented lower DHA in serum than those lean (n = 397) or overweight (n = 116) before pregnancy. Linoleic acid in arterial cord was elevated in obese women, which indicates lower fetal retention. Maternal DHA supplementation (200 mg/d) during pregnancy was associated with enhanced maternal and fetal DHA levels regardless of pre-pregnancy body mass index (BMI), although higher arterial DHA in overweight women indicated an attenuated response. Maternal DHA supplementation was not associated with cord venous DHA in neonates of mothers with GDM. The cord arteriovenous difference was similar for DHA between GDM and controls. In conclusion, maternal DHA supplementation during pregnancy enhanced fetal DHA status regardless of the pre-pregnancy BMI while GDM may reduce the effect of DHA supplementation in newborns