854 research outputs found

    Modification of Graphene Properties due to Electron-Beam Irradiation

    Full text link
    The authors report micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5 and 20 keV). It was found that the radiation exposures results in appearance of the strong disorder D band around 1345 1/cm indicating damage to the lattice. The D and G peak evolution with the increasing radiation dose follows the amorphization trajectory, which suggests graphene's transformation to the nanocrystalline, and then to amorphous form. The results have important implications for graphene characterization and device fabrication, which rely on the electron microscopy and focused ion beam processing.Comment: 13 pages and 4 figure

    Ab initio calculations of edge-functionalized armchair graphene nanoribbons: Structural, electronic, and vibrational effects

    Full text link
    We present a theoretical study on narrow armchair graphene nanoribbons (AGNRs) with hydroxyl functionalized edges. Although this kind of passivation strongly affects the structure of the ribbon, a high degree of edge functionalization proves to be particularly stable. An important consequence of the geometric deviations is a severe reduction of the band-gap of the investigated 7-AGNR. This shift follows a linear dependence on the number of added hydroxyl groups per unit cell and thus offers the prospect of a tunable band-gap by edge functionalization. We furthermore cover the behavior of characteristic phonons for the ribbon itself as well as fingerprint modes of the hydroxyl groups. A large down-shift of prominent Raman active modes allows the experimental determination of the degree of edge functionalization.Comment: 6 pages, 9 figure

    Effect of periodicity in the optimization of fine tuned dipolar plasmonic structures for SERS

    Get PDF
    Arrays of nanoantennas consisting of plasmonic dipole pairs have been widely used in surface-enhanced Raman spectroscopy (SERS). Fine-tuned structures that can efficiently convert incident electromagnetic energy to excite molecules and provide enhanced detection. However, this tuning mechanism also has its disadvantages. In order to prevent the cross coupling, the distance between each individual element must be increased. This leads to low packing density values which in turn results in a reduction of the overall enhanced Raman signal when these structures are compared to broadly tuned aggregates of particles such as those obtained through metal sputtering or colloidal deposition. In this work we demonstrate through simulations and experimental work that it is possible to increase the reflected signal of an array of nanoantennas by reducing the distance between them in the direction both perpendicular and parallel to the orientation of the incident electric field. It is shown the resonant wavelength shifts in two different spectral directions depending in how the intercell distance was reduced. These resultant shifts can reduce the tuning capabilities of the structures but also can increase the SERS intensity due to close coupling of the dipole pairs. We believe that these results will enable the design and fabrication of structures possessing a greater degree of tunability together with an overall enhanced Raman signal that can rival aggregated SERS substrates

    Determination of nanogram microparticles from explosives after real open-air explosions by confocal Raman microscopy

    Get PDF
    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their post-blast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of post-blast residues from ten open-air explosions caused by ten different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of post-blast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10x and 50x), immediately afterward; and finally, analysing the selected residues by confocal Raman spectroscopy in order to identify the post-blast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively and non-invasively analyse post-blast microscopic particles from explosives up to the nanogram range

    Candidate carriers and synthetic spectra of the 21- and 30-mu protoplanetary nebular bands

    Full text link
    Computational chemistry is used here to determine the vibrational line spectrum of several candidate molecules. It is shown that the thiourea functional group, associated with various carbonaceous structures (mainly compact and linear aromatic clusters), is able to mimic the 21-ÎĽ\mum band emitted by a number of proto-planetary nebulae. The combination of nitrogen and sulphur in thiourea is the essential source of emission in this model: the band disappears if these species are replaced by carbon. The astronomical 21-ÎĽ\mum feature extends redward to merge with another prominent band peaking between 25 and 30 ÎĽ\mum, also known as the 30-ÎĽ\mum band. It is found that the latter can be modelled by the combined spectra of aliphatic chains, made of CH2_{2} groups, oxygen bridges and OH groups, which provide the 30-ÎĽ\mum emission. The absence of oxygen all but extinguishes the 30-ÎĽ\mum emission. The emission between the 21- and 30-ÎĽ\mum bands is provided mainly by thiourea attached to linear aromatic clusters. The chemical software reveals that the essential role of the heteroatoms N, S and O stems from their large electronic charge. It also allows to determine the type of atomic vibration responsible for the different lines of each structure, which helps selecting the most relevant structures. A total of 22 structures have been selected here, but their list is far from being exhaustive; they are only intended as examples of 3 generic classes. When background dust emission is added, model spectra are obtained, which are able to satisfactorily reproduce recent observations of proto-planetary nebulae. The relative numbers of atomic species used in this model are typically H:C:O:N:S=53:36:8:2:1.Comment: 9 pages, 14 figure

    Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air-water interface

    Full text link
    Spectra of octadecylamine (ODA) Langmuir monolayers and egg phosphatidylcholine (PC)/ODA-mixed monolayers at the air-water interface have been acquired. The organization of the monolayers has been characterized by surface pressure-area isotherms. Application of polarized optical microscopy provides further insight in the domain structures and interactions of the film components. Surface-enhanced Raman scattering (SERS) data indicate that enhancement in Raman spectra can be obtained by strong interaction between headgroups of the surfactants and silver particles in subphase. By mixing ODA with phospholipid molecules and spreading the mixture at the air-water interface, we acquired vibrational information of phospholipid molecules with surfactant-aided SERS effect.Comment: 8 pages, 9 figure

    Partially Fluorinated Poly- p -xylylenes Synthesized by CVD Polymerization

    Full text link
    This paper describes partially fluorinated poly- p -xylylenes prepared by CVD polymerization. The synthesis, characterization, and surface modification of two partially fluorinated polymer coatings, namely poly(4,12-dibromo-1,1,9,9-tetrafluoro- p -xylylene) ( 2 ) and poly(4-heptadecafluorononanoyl- p -xylylene-co- p -xylylene) ( 4 ), is described. Polymer 2 is synthesized from 4,12-dibromo-1,1,9,9-tetrafluoro[2.2]paracyclophane ( 1 ), which is fluorinated at the aliphatic bridge, while 4-heptadecafluorononanoyl[2.2]paracyclophane ( 3 ), which contains a perfluorinated keto group at the aromatic ring, is used to synthesize polymer 4 . Furthermore, the keto-functionalized polymer 4 introduces both extreme hydrophobicity and surface reactivity towards hydrazide-containing ligands.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63082/1/142_ftp.pd
    • …
    corecore