2,075 research outputs found

    Apoptotic Sphingolipid Ceramide in Cancer Therapy

    Get PDF
    Apoptosis, also called programmed cell death, is physiologically and pathologically involved in cellular homeostasis. Escape of apoptotic signaling is a critical strategy commonly used for cancer tumorigenesis. Ceramide, a derivative of sphingolipid breakdown products, acts as second messenger for multiple extracellular stimuli including growth factors, chemical agents, and environmental stresses, such as hypoxia, and heat stress as well as irradiation. Also, ceramide acts as tumor-suppressor lipid because a variety of stress stimuli cause apoptosis by increasing intracellular ceramide to initiate apoptotic signaling. Defects on ceramide generation and sphingolipid metabolism are developed for cancer cell survival and cancer therapy resistance. Alternatively, targeting ceramide metabolism to correct these defects might provide opportunities to overcome cancer therapy resistance

    Deformable Model-Driven Neural Rendering for High-Fidelity 3D Reconstruction of Human Heads Under Low-View Settings

    Full text link
    Reconstructing 3D human heads in low-view settings presents technical challenges, mainly due to the pronounced risk of overfitting with limited views and high-frequency signals. To address this, we propose geometry decomposition and adopt a two-stage, coarse-to-fine training strategy, allowing for progressively capturing high-frequency geometric details. We represent 3D human heads using the zero level-set of a combined signed distance field, comprising a smooth template, a non-rigid deformation, and a high-frequency displacement field. The template captures features that are independent of both identity and expression and is co-trained with the deformation network across multiple individuals with sparse and randomly selected views. The displacement field, capturing individual-specific details, undergoes separate training for each person. Our network training does not require 3D supervision or object masks. Experimental results demonstrate the effectiveness and robustness of our geometry decomposition and two-stage training strategy. Our method outperforms existing neural rendering approaches in terms of reconstruction accuracy and novel view synthesis under low-view settings. Moreover, the pre-trained template serves a good initialization for our model when encountering unseen individuals.Comment: Accepted by ICCV2023. Visit our project page at https://github.com/xubaixinxbx/3dhead

    Hydrodynamic Modeling of a Tropical Tidal River Using the Dynamic Estuary Model (DYNHYD5): A Case Study in Sibu Laut River, Sarawak, Malaysia

    Get PDF
    Application of the Dynamic Estuary Model (DYNHYD5) in a tropical tidal river is limited. The successfully calibrated and validated hydrodynamic model is valuable in subsequent water quality simulation for environmental management. Hence, a hydrodynamic modeling approach using the DYNHYD5 was conducted in a tropical tidal river in Malaysia. Samplings were conducted in the Sibu Laut River to collect the hydrology data for model simulation. The model was calibrated and validated by comparing the simulated flow and mean depth with the field data at different simulation periods of time. The results showed that the model DYNHYD5 was successfully calibrated with channel flows and mean depths and then reproduced with good agreement in validation. The observed and simulated data were linearly correlated (R2 > 0.8) with values of slope γ ranging from 0.891 to 1.204 in both calibration and validation. The Nash–Sutcliffe coefficient of efficiency (NSE) of more than 0.7 in both calibration and validation also indicated satisfactory comparison between the observed and simulated data. The result indicated that the application of the DYNHYD5 is feasible in a tropical tidal river in Malaysia

    Targeted profiling of chlorinated transformation products and the parent micropollutants in the aquatic environment: A comparison between two coastal cities

    Get PDF
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances
    corecore