150 research outputs found
Multi-task Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs
Many popular knowledge graphs such as Freebase, YAGO or DBPedia maintain a
list of non-discrete attributes for each entity. Intuitively, these attributes
such as height, price or population count are able to richly characterize
entities in knowledge graphs. This additional source of information may help to
alleviate the inherent sparsity and incompleteness problem that are prevalent
in knowledge graphs. Unfortunately, many state-of-the-art relational learning
models ignore this information due to the challenging nature of dealing with
non-discrete data types in the inherently binary-natured knowledge graphs. In
this paper, we propose a novel multi-task neural network approach for both
encoding and prediction of non-discrete attribute information in a relational
setting. Specifically, we train a neural network for triplet prediction along
with a separate network for attribute value regression. Via multi-task
learning, we are able to learn representations of entities, relations and
attributes that encode information about both tasks. Moreover, such attributes
are not only central to many predictive tasks as an information source but also
as a prediction target. Therefore, models that are able to encode, incorporate
and predict such information in a relational learning context are highly
attractive as well. We show that our approach outperforms many state-of-the-art
methods for the tasks of relational triplet classification and attribute value
prediction.Comment: Accepted at CIKM 201
Exploring Backdoor Vulnerabilities of Chat Models
Recent researches have shown that Large Language Models (LLMs) are
susceptible to a security threat known as Backdoor Attack. The backdoored model
will behave well in normal cases but exhibit malicious behaviours on inputs
inserted with a specific backdoor trigger. Current backdoor studies on LLMs
predominantly focus on instruction-tuned LLMs, while neglecting another
realistic scenario where LLMs are fine-tuned on multi-turn conversational data
to be chat models. Chat models are extensively adopted across various
real-world scenarios, thus the security of chat models deserves increasing
attention. Unfortunately, we point out that the flexible multi-turn interaction
format instead increases the flexibility of trigger designs and amplifies the
vulnerability of chat models to backdoor attacks. In this work, we reveal and
achieve a novel backdoor attacking method on chat models by distributing
multiple trigger scenarios across user inputs in different rounds, and making
the backdoor be triggered only when all trigger scenarios have appeared in the
historical conversations. Experimental results demonstrate that our method can
achieve high attack success rates (e.g., over 90% ASR on Vicuna-7B) while
successfully maintaining the normal capabilities of chat models on providing
helpful responses to benign user requests. Also, the backdoor can not be easily
removed by the downstream re-alignment, highlighting the importance of
continued research and attention to the security concerns of chat models.
Warning: This paper may contain toxic content.Comment: Code and data are available at
https://github.com/hychaochao/Chat-Models-Backdoor-Attackin
Modeling Relation Paths for Representation Learning of Knowledge Bases
Representation learning of knowledge bases (KBs) aims to embed both entities
and relations into a low-dimensional space. Most existing methods only consider
direct relations in representation learning. We argue that multiple-step
relation paths also contain rich inference patterns between entities, and
propose a path-based representation learning model. This model considers
relation paths as translations between entities for representation learning,
and addresses two key challenges: (1) Since not all relation paths are
reliable, we design a path-constraint resource allocation algorithm to measure
the reliability of relation paths. (2) We represent relation paths via semantic
composition of relation embeddings. Experimental results on real-world datasets
show that, as compared with baselines, our model achieves significant and
consistent improvements on knowledge base completion and relation extraction
from text.Comment: 10 page
Graph Neural Networks with Generated Parameters for Relation Extraction
Recently, progress has been made towards improving relational reasoning in
machine learning field. Among existing models, graph neural networks (GNNs) is
one of the most effective approaches for multi-hop relational reasoning. In
fact, multi-hop relational reasoning is indispensable in many natural language
processing tasks such as relation extraction. In this paper, we propose to
generate the parameters of graph neural networks (GP-GNNs) according to natural
language sentences, which enables GNNs to process relational reasoning on
unstructured text inputs. We verify GP-GNNs in relation extraction from text.
Experimental results on a human-annotated dataset and two distantly supervised
datasets show that our model achieves significant improvements compared to
baselines. We also perform a qualitative analysis to demonstrate that our model
could discover more accurate relations by multi-hop relational reasoning
Secondary Controller Design for the Safety of Nonlinear Systems via Sum-of-Squares Programming
We consider the problem of ensuring the safety of nonlinear control systems under adversarial signals. Using Lyapunov based reachability analysis, we first give sufficient conditions to assess safety, i.e., to guarantee that the states of the control system, when starting from a given initial set, always remain in a prescribed safe set. We consider polynomial systems with semi-algebraic safe sets. Using the S-procedure for polynomial functions, safety conditions can be formulated as a Sum-Of-Squares (SOS) programme, which can be solved efficiently. When safety cannot be guaranteed, we provide tools via SOS to synthesize polynomial controllers that enforce safety of the closed loop system. The theoretical results are illustrated through numerical simulations
Representation Learning for Natural Language Processing
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing
Secondary Controller Design for the Safety of Nonlinear Systems via Sum-of-Squares Programming
We consider the problem of ensuring the safety of nonlinear control systems under adversarial signals. Using Lyapunov based reachability analysis, we first give sufficient conditions to assess safety, i.e., to guarantee that the states of the control system, when starting from a given initial set, always remain in a prescribed safe set. We consider polynomial systems with semi-algebraic safe sets. Using the S-procedure for polynomial functions, safety conditions can be formulated as a Sum-Of-Squares (SOS) programme, which can be solved efficiently. When safety cannot be guaranteed, we provide tools via SOS to synthesize polynomial controllers that enforce safety of the closed loop system. The theoretical results are illustrated through numerical simulations
Relational Collaborative Filtering:Modeling Multiple Item Relations for Recommendation
Existing item-based collaborative filtering (ICF) methods leverage only the
relation of collaborative similarity. Nevertheless, there exist multiple
relations between items in real-world scenarios. Distinct from the
collaborative similarity that implies co-interact patterns from the user
perspective, these relations reveal fine-grained knowledge on items from
different perspectives of meta-data, functionality, etc. However, how to
incorporate multiple item relations is less explored in recommendation
research. In this work, we propose Relational Collaborative Filtering (RCF), a
general framework to exploit multiple relations between items in recommender
system. We find that both the relation type and the relation value are crucial
in inferring user preference. To this end, we develop a two-level hierarchical
attention mechanism to model user preference. The first-level attention
discriminates which types of relations are more important, and the second-level
attention considers the specific relation values to estimate the contribution
of a historical item in recommending the target item. To make the item
embeddings be reflective of the relational structure between items, we further
formulate a task to preserve the item relations, and jointly train it with the
recommendation task of preference modeling. Empirical results on two real
datasets demonstrate the strong performance of RCF. Furthermore, we also
conduct qualitative analyses to show the benefits of explanations brought by
the modeling of multiple item relations
Enabling Large Language Models to Learn from Rules
Large language models (LLMs) have shown incredible performance in completing
various real-world tasks. The current knowledge learning paradigm of LLMs is
mainly based on learning from examples, in which LLMs learn the internal rule
implicitly from a certain number of supervised examples. However, the learning
paradigm may not well learn those complicated rules, especially when the
training examples are limited. We are inspired that humans can learn the new
tasks or knowledge in another way by learning from rules. That is, humans can
grasp the new tasks or knowledge quickly and generalize well given only a
detailed rule and a few optional examples. Therefore, in this paper, we aim to
explore the feasibility of this new learning paradigm, which encodes the
rule-based knowledge into LLMs. We propose rule distillation, which first uses
the strong in-context abilities of LLMs to extract the knowledge from the
textual rules and then explicitly encode the knowledge into LLMs' parameters by
learning from the above in-context signals produced inside the model. Our
experiments show that making LLMs learn from rules by our method is much more
efficient than example-based learning in both the sample size and
generalization ability.Comment: In progres
- …