3 research outputs found

    A Bose-Einstein Condensate in a Uniform Light-induced Vector Potential

    Full text link
    We use a two-photon dressing field to create an effective vector gauge potential for Bose-condensed Rb atoms in the F=1 hyperfine ground state. The dressed states in this Raman field are spin and momentum superpositions, and we adiabatically load the atoms into the lowest energy dressed state. The effective Hamiltonian of these neutral atoms is like that of charged particles in a uniform magnetic vector potential, whose magnitude is set by the strength and detuning of Raman coupling. The spin and momentum decomposition of the dressed states reveals the strength of the effective vector potential, and our measurements agree quantitatively with a simple single-particle model. While the uniform effective vector potential described here corresponds to zero magnetic field, our technique can be extended to non-uniform vector potentials, giving non-zero effective magnetic fields.Comment: 5 pages, submitted to Physical Review Letter

    Rapid production of 87^{87}Rb BECs in a combined magnetic and optical potential

    Full text link
    We describe an apparatus for quickly and simply producing \Rb87 Bose-Einstein condensates. It is based on a magnetic quadrupole trap and a red detuned optical dipole trap. We collect atoms in a magneto-optical trap (MOT) and then capture the atom in a magnetic quadrupole trap and force rf evaporation. We then transfer the resulting cold, dense cloud into a spatially mode-matched optical dipole trap by lowering the quadrupole field gradient to below gravity. This technique combines the efficient capture of atoms from a MOT into a magnetic trap with the rapid evaporation of optical dipole traps; the approach is insensitive to the peak quadrupole gradient and the precise trapping beam waist. Our system reliably produces a condensate with N≈2×106N\approx2\times10^6 atoms every 16\second

    Versatile transporter apparatus for experiments with optically trapped Bose-Einstein condensates

    Full text link
    We describe a versatile and simple scheme for producing magnetically and optically-trapped Rb-87 Bose-Einstein condensates, based on a moving-coil transporter apparatus. The apparatus features a TOP trap that incorporates the movable quadrupole coils used for magneto-optical trapping and long-distance magnetic transport of atomic clouds. As a stand-alone device, this trap allows for the stable production of condensates containing up to one million atoms. In combination with an optical dipole trap, the TOP trap acts as a funnel for efficient loading, after which the quadrupole coils can be retracted, thereby maximizing optical access. The robustness of this scheme is illustrated by realizing the superfluid-to-Mott insulator transition in a three-dimensional optical lattice
    corecore