56,755 research outputs found

    Possible JPC=0+J^{PC} = 0^{+-} Exotic State

    Full text link
    We study the possible exotic states with JPC=0+J^{PC} = 0^{+-} using the tetraquark interpolating currents with the QCD sum rule approach. The extracted masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the bottomomium-like states. There is no working region for the light tetraquark currents, which implies the light 0+0^{+-} state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table

    Energy-Throughput Tradeoff in Sustainable Cloud-RAN with Energy Harvesting

    Full text link
    In this paper, we investigate joint beamforming for energy-throughput tradeoff in a sustainable cloud radio access network system, where multiple base stations (BSs) powered by independent renewable energy sources will collaboratively transmit wireless information and energy to the data receiver and the energy receiver simultaneously. In order to obtain the optimal joint beamforming design over a finite time horizon, we formulate an optimization problem to maximize the throughput of the data receiver while guaranteeing sufficient RF charged energy of the energy receiver. Although such problem is non-convex, it can be relaxed into a convex form and upper bounded by the optimal value of the relaxed problem. We further prove tightness of the upper bound by showing the optimal solution to the relaxed problem is rank one. Motivated by the optimal solution, an efficient online algorithm is also proposed for practical implementation. Finally, extensive simulations are performed to verify the superiority of the proposed joint beamforming strategy to other beamforming designs.Comment: Accepted by ICC 201

    Doppler Amplification of Motion of a Trapped Three-Level Ion

    Full text link
    The system of a trapped ion translationally excited by a blue-detuned near-resonant laser, sometimes described as an instance of a phonon laser, has recently received attention as interesting in its own right and for its application to non-destructive readout of internal states of non-fluorescing ions. Previous theoretical work has been limited to cases of two-level ions. Here, we perform simulations to study the dynamics of a phonon laser involving the Λ\Lambda-type ^{138}\mbox{Ba}^{+} ion, in which coherent population trapping effects lead to different behavior than in the previously studied cases. We also explore optimization of the laser parameters to maximize amplification gain and signal-to-noise ratio for internal state readout

    Provenance analysis for instagram photos

    Get PDF
    As a feasible device fingerprint, sensor pattern noise (SPN) has been proven to be effective in the provenance analysis of digital images. However, with the rise of social media, millions of images are being uploaded to and shared through social media sites every day. An image downloaded from social networks may have gone through a series of unknown image manipulations. Consequently, the trustworthiness of SPN has been challenged in the provenance analysis of the images downloaded from social media platforms. In this paper, we intend to investigate the effects of the pre-defined Instagram images filters on the SPN-based image provenance analysis. We identify two groups of filters that affect the SPN in quite different ways, with Group I consisting of the filters that severely attenuate the SPN and Group II consisting of the filters that well preserve the SPN in the images. We further propose a CNN-based classifier to perform filter-oriented image categorization, aiming to exclude the images manipulated by the filters in Group I and thus improve the reliability of the SPN-based provenance analysis. The results on about 20, 000 images and 18 filters are very promising, with an accuracy higher than 96% in differentiating the filters in Group I and Group II

    Performance of Photosensors in the PandaX-I Experiment

    Full text link
    We report the long term performance of the photosensors, 143 one-inch R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the first phase of the PandaX dual-phase xenon dark matter experiment. This is the first time that a significant number of R11410 photomultiplier tubes were operated in liquid xenon for an extended period, providing important guidance to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers' comment
    corecore