2,320 research outputs found
BPS Electromagnetic Waves on Giant Gravitons
We find new 1/8-BPS giant graviton solutions in , carrying
three angular momenta along , and investigate their properties.
Especially, we show that nonzero worldvolume gauge fields are admitted
preserving supersymmetry. These gauge field modes can be viewed as
electromagnetic waves along the compact D3 brane, whose Poynting vector
contributes to the BPS angular momenta. We also analyze the (nearly-)spherical
giant gravitons with worldvolume gauge fields in detail. Expressing the
in Hopf fibration ( fibred over ), the wave propagates along the
fiber.Comment: 25 pages, no figures, v2: references adde
Vortices, Q-balls and Domain Walls on Dielectric M2-branes
We study BPS solitons in N=6 U(N) \times U(N) Chern-Simons-matter theory
deformed by an F-term mass. The F-term mass generically breaks N=6
supersymmetry down to N=2. At vacua, M2-branes are polarized into a fuzzy S^3
forming a spherical M5-brane with topology \mathbf{R}^{1,2} \times S^3. The
polarization is interpreted as Myers' dielectric effect caused by an
anti-self-dual 4-form flux T_4 in the eleven-dimensional supergravity. Assuming
a polarized M2-brane configuration, the model effectively reduces to the
well-known abelian Chern-Simons-Higgs model studied in detail by
Jackiw-Lee-Weinberg. We find that the potential for the fuzzy S^3 radius agrees
with the one calculated from the M5-brane point of view at large N. This
effective model admits not only BPS topological vortex and domain wall
solutions but also non-topological solitons that keep 1/4 of the manifest N=2
supersymmetry. We also comment on the reduction of our configuration to ten
dimensions.Comment: references added, minor modification
Black Hole Statistics from Holography
We study the microstates of the ``small'' black hole in the \half-BPS
sector of AdS, the superstar of Myers and Tafjord, using the
powerful holographic description provided by LLM. The system demonstrates the
inherently statistical nature of black holes, with the geometry of Myer and
Tafjord emerging only after averaging over an ensemble of geometries. The
individual microstate geometries differ in the highly non-trivial topology of a
quantum foam at their core, and the entropy can be understood as a partition of
units of flux among 5-cycles, as required by flux quantization. While the
system offers confirmation of the most controversial aspect of Mathur and
Lunin's recent ``fuzzball'' proposal, we see signs of a discrepancy in
interpreting its details.Comment: 21 pages, 4 figures; References adde
Rational foundation of GR in terms of statistical mechanic in the AdS/CFT framework
In this article, we work out the microscopic statistical foundation of the
supergravity description of the simplest 1/2 BPS sector in the AdS(5)/CFT(4).
Then, all the corresponding supergravity observables are related to
thermodynamical observables, and General Relativity is understood as a
mean-field theory. In particular, and as an example, the Superstar is studied
and its thermodynamical properties clarified.Comment: 13 pages, 6 eps figures, latex, some improvements introduced,
reference added, typos correcte
Effective Field Theories
Effective field theories encode the predictions of a quantum field theory at
low energy. The effective theory has a fairly low ultraviolet cutoff. As a
result, loop corrections are small, at least if the effective action contains a
term which is quadratic in the fields, and physical predictions can be read
straight from the effective Lagrangean.
Methods will be discussed how to compute an effective low energy action from
a given fundamental action, either analytically or numerically, or by a
combination of both methods. Basically,the idea is to integrate out the high
frequency components of fields. This requires the choice of a "blockspin",i.e.
the specification of a low frequency field as a function of the fundamental
fields. These blockspins will be the fields of the effective field theory. The
blockspin need not be a field of the same type as one of the fundamental
fields, and it may be composite. Special features of blockspins in nonabelian
gauge theories will be discussed in some detail.
In analytical work and in multigrid updating schemes one needs interpolation
kernels \A from coarse to fine grid in addition to the averaging kernels
which determines the blockspin. A neural net strategy for finding optimal
kernels is presented.
Numerical methods are applicable to obtain actions of effective theories on
lattices of finite volume. The constraint effective potential) is of particular
interest. In a Higgs model it yields the free energy, considered as a function
of a gauge covariant magnetization. Its shape determines the phase structure of
the theory. Its loop expansion with and without gauge fields can be used to
determine finite size corrections to numerical data.Comment: 45 pages, 9 figs., preprint DESY 92-070 (figs. 3-9 added in ps
format
The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?
Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees
Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was
a complex region containing current helicity flux of opposite signs. The main
positive sunspots were dominated by negative helicity fields, while positive
helicity patches persisted both inside and around the main positive sunspots.
Based on a comparison of two days of deduced current helicity density,
pronounced changes were noticed which were associated with the occurrence of an
X10 flare that peaked at 20:49 UT, 2003 October 29. The average current
helicity density (negative) of the main sunspots decreased significantly by
about 50. Accordingly, the helicity densities of counter-helical patches
(positive) were also found to decay by the same proportion or more. In
addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100
keV energy range. The cores of these two HXR footpoints were adjacent to the
positions of two patches with positive current helicity which disappeared after
the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted
from reconnection between magnetic flux tubes having opposite current helicity.
Finally, the global decrease of current helicity in AR 10486 by ~50% can be
understood as the helicity launched away by the halo coronal mass ejection
(CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
Mode conversion enables optical pulling force in photonic crystal waveguides
We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode with a larger forward momentum and the 1st order mode with a smaller forward momentum. When the 1st order mode is launched, the scattering by the object inside the waveguide results in the conversion from the 1st order mode to the 0th order mode, thus creating the optical pulling force according to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband with naturally occurred lateral equilibriums and has a long manipulation range. Flexibilities of the current configuration make it valuable for the optical force tailoring and optical manipulation operation, especially in microfluidic channel systems
Operator product expansion of higher rank Wilson loops from D-branes and matrix models
In this paper we study correlation functions of circular Wilson loops in
higher dimensional representations with chiral primary operators of N=4 super
Yang-Mills theory. This is done using the recently established relation between
higher rank Wilson loops in gauge theory and D-branes with electric fluxes in
supergravity. We verify our results with a matrix model computation, finding
perfect agreement in both the symmetric and the antisymmetric case.Comment: 28 pages, latex; v2: minor misprints corrected, references adde
New supersymmetric solutions of N=2, D=5 gauged supergravity with hyperscalars
We construct new supersymmetric solutions, including AdS bubbles, in an N=2
truncation of five-dimensional N=8 gauged supergravity. This particular
truncation is given by N=2 gauged supergravity coupled to two vector multiples
and three incomplete hypermultiplets, and was originally investigated in the
context of obtaining regular AdS bubble geometries with multiple active
R-charges. We focus on cohomogeneity-one solutions corresponding to objects
with two equal angular momenta and up to three independent R-charges.
Curiously, we find a new set of zero and negative mass solitons asymptotic to
AdS_5/Z_k, for k \ge 3, which are everywhere regular without closed timelike
curves.Comment: Latex 3 times, 42 page
Half-BPS Giants, Free Fermions and Microstates of Superstars
We consider 1/2-BPS states in AdS/CFT. Using the matrix model description of
chiral primaries explicit mappings among configurations of fermions, giant
gravitons and the dual-giant gravitons are obtained. These maps lead to a
`duality' between the giant and the dual-giant configurations which is the
reflection of particle-hole duality of the fermion picture. These dualities
give rise to some interesting consequences which we study. We then calculate
the degeneracy of 1/2-BPS states both from the CFT and string theory and show
that they match. The asymptotic degeneracy grows exponentially with the
comformal dimension. We propose that the five-dimensional single charge
`superstar' geometry should carry this density of states. An appropriate
stretched horizon can be placed in this geometry and the entropy predicted by
the CFT and the string theory microstate counting can be reproduced by the
Bekenstein-Hawking formula up to a numerical coefficient. Similar M-theory
examples are also considered.Comment: 21 pages, v2:typos corrected and references adde
- …
