2,471 research outputs found

    Gauge coupling Unification and SO(10) in 5D

    Full text link
    We analyze the gauge unification in minimal supersymmetric SO(10) grand unified theories in 5 dimensions. The single extra spatial dimension is compactified on the orbifold S^1/(Z_2 x Z_2') reducing the gauge group to that of Pati-Salam SU(4)_c x SU(2)_L x SU(2)_R. The Standard Model gauge group is achieved by the further brane-localized Higgs mechanism on one of the fixed points. There are two main different approaches developed in literature. Higgs mechanism can take place on the Pati Salam brane, or on the SO(10) preserving brane. We show, both analytically and numerically, that in the first case a natural and succesfull gauge coupling unification can be achieved, while the second case is highly disfavoured. For completeness, we consider either the case in which the brane breaking scale is near the cutoff scale or the case in which it is lower than the compactification scale.Comment: 18 Pages and 8 PostScript Figure

    Fermion masses and proton decay in a minimal five-dimensional SO(10) model

    Full text link
    We propose a minimal SO(10) model in 5 space-time dimensions. The single extra spatial dimension is compactified on the orbifold S^1/(Z_2 x Z_2') reducing the gauge group to that of Pati-Salam. The breaking down to the standard model group is obtained through an ordinary Higgs mechanism taking place at the Pati-Salam brane, giving rise to a proper gauge coupling unification. We achieve a correct description of fermion masses and mixing angles by describing first and second generations as bulk fields, and by embedding the third generation into four multiplets located at the Pati-Salam brane. The Yukawa sector is simple and compact and predicts a neutrino spectrum of normal hierarchy type. Concerning proton decay, dimension five operators are absent and the essentially unique localization of matter multiplets implies that the minimal couplings between the super-heavy gauge bosons and matter fields are vanishing. Non-minimal interactions are allowed but the resulting dimension six operators describing proton decay are too suppressed to produce observable effects, even in future, super-massive detectors.Comment: 21 pages, 3 figure

    Recreation Demand of Consumer with Experiential Marketing in Festival

    Get PDF
    AbstractExperiential marketing that allows visitors to fully participate and appreciate festival activities con be coupled with strategies of market segmentation, which is of great benefit to industrial and cultural activities. In this study, we used factor analysis method to understand the perception factor of visitors participate the Sweet Taiwan Year Festival in Tainan country of Taiwan. And segmented festival market by cluster analysis based on delineated experiential perception factors. The empirical result of this study shows that experiential perception clusters and the visitor type have become the most important factors in influencing the experiential value, the relation quality and the relation outcome

    Seasonal variation in sonic muscles in the fawn cusk-eel <i>Lepophidium profundorum</i>

    Get PDF
    The fawn cusk-eel Lepophidium profundorum (Ophidiidae) has an unusual sound-producing system with sexually dimorphic sets of antagonistic muscles. Outside the mating season, the dorsal and ventral muscles are well developed and larger in males than in females, but the tiny intermediate muscles are smaller, suggesting a minor role, if any, in male advertisement call production. We examined summer individuals with more developed gonads and find a fourfold hypertrophy of the intermediate but not the other muscles. This result suggests androgen dependence and an important role in sound production for the intermediate muscle. Even though both sexes gain weight in the summer, the ventral and dorsal muscles in females lose weight, suggesting that sound production is less important in females and that muscle mass may be used to support egg growth

    Parameter Scalings of ICRF Mode Conversion Flow Drive in Alcator C-Mod Plasmas

    Get PDF

    Optimal Sizes of Dielectric Microspheres for Cavity QED with Strong Coupling

    Get PDF
    The whispering gallery modes (WGMs) of quartz microspheres are investigated for the purpose of strong coupling between single photons and atoms in cavity quantum electrodynamics (cavity QED). Within our current understanding of the loss mechanisms of the WGMs, the saturation photon number, n, and critical atom number, N, cannot be minimized simultaneously, so that an "optimal" sphere size is taken to be the radius for which the geometric mean, (n x N)^(1/2), is minimized. While a general treatment is given for the dimensionless parameters used to characterize the atom-cavity system, detailed consideration is given to the D2 transition in atomic Cesium (852nm) using fused-silica microspheres, for which the maximum coupling coefficient g/(2*pi)=750MHz occurs for a sphere radius a=3.63microns corresponding to the minimum for n=6.06x10^(-6). By contrast, the minimum for N=9.00x10^(-6) occurs for a sphere radius of a=8.12microns, while the optimal sphere size for which (n x N)^(1/2) is minimized occurs at a=7.83microns. On an experimental front, we have fabricated fused-silica microspheres with radii a=10microns and consistently observed quality factors Q=0.8x10^(7). These results for the WGMs are compared with corresponding parameters achieved in Fabry-Perot cavities to demonstrate the significant potential of microspheres as a tool for cavity QED with strong coupling.Comment: 12 pages, 14 figure

    STM characterization of the Si-P heterodimer

    Full text link
    We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to study the behavior of adsorbed phosphine (PH3_{3}) on Si(001), as a function of annealing temperature, paying particular attention to the formation of the Si-P heterodimer. Dosing the Si(001) surface with {\sim}0.002 Langmuirs of PH3_{3} results in the adsorption of PHx_{x} (x=2,3) onto the surface and some etching of Si to form individual Si ad-dimers. Annealing to 350^{\circ}C results in the incorporation of P into the surface layer to form Si-P heterodimers and the formation of short 1-dimensional Si dimer chains and monohydrides. In filled state STM images, isolated Si-P heterodimers appear as zig-zag features on the surface due to the static dimer buckling induced by the heterodimer. In the presence of a moderate coverage of monohydrides this static buckling is lifted, rending the Si-P heterodimers invisible in filled state images. However, we find that we can image the heterodimer at all H coverages using empty state imaging. The ability to identify single P atoms incorporated into Si(001) will be invaluable in the development of nanoscale electronic devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi

    Small BGK waves and nonlinear Landau damping

    Full text link
    Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period. Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose's linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore, when p=2,we prove that there exist no nontrivial invariant structures in the H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for linearly stable homogeneous state. This suggests that the contrasting dynamics in W^{s,p} spaces with the critical power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to the linear level

    ICRF Specific Impurity Sources and Plasma Sheaths in Alcator C-Mod

    Get PDF

    The Off-diagonal Goldberger-Treiman Relation and Its Discrepancy

    Get PDF
    We study the off-diagonal Goldberger-Treiman relation (ODGTR) and its discrepancy (ODGTD) in the N, Delta, pi sector through O(p^2) using heavy baryon chiral perturbation theory. To this order, the ODGTD and axial vector N to Delta transition radius are determined solely by low energy constants. Loop corrections appear at O(p^4). For low-energy constants of natural size, the ODGTD would represent a ~ 2% correction to the ODGTR. We discuss the implications of the ODGTR and ODGTD for lattice and quark model calculations of the transition form factors and for parity-violating electroexcitation of the Delta.Comment: 11 pages, 1 eps figur
    corecore