31,293 research outputs found
The Possible State X(1600)
The interesting state X(1600) with can't be a
conventional meson in the quark model. Using a mixed interpolating
current with different color configurations, we investigate the possible
existence of X(1600) in the framework of QCD finite energy sum rules. Our
results indicate that both the "hidden color" and coupled channel effects may
be quite important in the multiquark system. We propose several reactions to
look for this state.Comment: axodraw.sty include
The Vector and Axial-Vector Charmonium-like States
After constructing all the tetraquark interpolating currents with
and in a systematic way, we
investigate the two-point correlation functions to extract the masses of the
charmonium-like states with QCD sum rule. For the
charmonium-like state, GeV, which implies a possible
tetraquark interpretation for the state Y(4660). The masses for both the
and charmonium-like states are
around GeV, which are slightly above the mass of X(3872). For the
charmonium-like state, the extracted mass is GeV. We also discuss the possible decay modes and experimental search of
the charmonium-like states.Comment: 18 pages, 6 figures and 6 table
Possible Exotic State
We study the possible exotic states with using the
tetraquark interpolating currents with the QCD sum rule approach. The extracted
masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the
bottomomium-like states. There is no working region for the light tetraquark
currents, which implies the light state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table
Heavy Pentaquarks
We construct the spin-flavor wave functions of the possible heavy pentaquarks
containing an anti-charm or anti-bottom quark using various clustered quark
models. Then we estimate the masses and magnetic moments of the or heavy pentaquarks. We emphasize the difference in the
predictions of these models. Future experimental searches at BESIII, CLEOc,
BELLE, and LEP may find these interesting states
Spin entanglement induced by spin-orbit interactions in coupled quantum dots
We theoretically explore the possibility of creating spin quantum
entanglement in a system of two electrons confined respectively in two
vertically coupled quantum dots in the presence of Rashba type spin-orbit
coupling. We find that the system can be described by a generalized Jaynes -
Cummings model of two modes bosons interacting with two spins. The lower
excitation states of this model are calculated to reveal the underlying physics
of the far infrared absorption spectra. The analytic perturbation approach
shows that an effective transverse coupling of spins can be obtained by
eliminating the orbital degrees of freedom in the large detuning limit. Here,
the orbital degrees of freedom of the two electrons, which are described by two
modes of bosons, serve as a quantized data bus to exchange the quantum
information between two electrons. Then a nontrivial two-qubit logic gate is
realized and spin entanglement between the two electrons is created by virtue
of spin-orbit coupling.Comment: 7 pages, 5 figure
The Pseudoscalar Meson and Heavy Vector Meson Scattering Lengths
We have systematically studied the S-wave pseudoscalar meson and heavy vector
meson scattering lengths to the third order with the chiral perturbation
theory, which will be helpful to reveal their strong interaction. For
comparison, we have presented the numerical results of the scattering lengths
(1) in the framework of the heavy meson chiral perturbation theory and (2) in
the framework of the infrared regularization. The chiral expansion converges
well in some channels.Comment: 10 pages, 1 figures, 4 tables. Corrected typos, Improved numerical
results, and More dicussions. Accepted for publication by Phys.Rev.
Pentaquark Magnetic Moments In Different Models
We calculate the magnetic moments of the pentaquark states from different
models and compare our results with predictions of other groups.Comment: 17 pages, no figur
Magnetic Moments of Pentaquarks
If the of and pentaquarks is really found to
be by future experiments, they will be accompanied by
partners in some models. It is reasonable to expect that
these states will also be discovered in the near future with
the current intensive experimental and theoretical efforts. We estimate
pentaquark magnetic moments using different models.Comment: 13 page
Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring
The effects of electron-electron interaction of a two-electron nanoring on
the energy levels and far-infrared (FIR) spectroscopy have been investigated
based on a model calculation which is performed within the exactly numerical
diagonalization. It is found that the interaction changes the energy spectra
dramatically, and also shows significant influence on the FIR spectroscopy. The
crossings between the lowest spin-singlet and triplet states induced by the
coulomb interaction are clearly revealed. Our results are related to the
experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223
(2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15
- …