31,293 research outputs found

    The Possible JPCIG=2++2+J^{PC}I^G=2^{++}2^+ State X(1600)

    Full text link
    The interesting state X(1600) with JPCIG=2++2+J^{PC}I^G=2^{++}2^+ can't be a conventional qqˉq \bar q meson in the quark model. Using a mixed interpolating current with different color configurations, we investigate the possible existence of X(1600) in the framework of QCD finite energy sum rules. Our results indicate that both the "hidden color" and coupled channel effects may be quite important in the multiquark system. We propose several reactions to look for this state.Comment: axodraw.sty include

    The Vector and Axial-Vector Charmonium-like States

    Full text link
    After constructing all the tetraquark interpolating currents with JPC=1−+,1−−,1++J^{PC}=1^{-+}, 1^{--}, 1^{++} and 1+−1^{+-} in a systematic way, we investigate the two-point correlation functions to extract the masses of the charmonium-like states with QCD sum rule. For the 1−−1^{--} qcqˉcˉqc\bar q\bar c charmonium-like state, mX=4.6∼4.7m_X=4.6\sim4.7 GeV, which implies a possible tetraquark interpretation for the state Y(4660). The masses for both the 1++1^{++} qcqˉcˉqc\bar q\bar c and scsˉcˉsc\bar s\bar c charmonium-like states are around 4.0∼4.24.0\sim 4.2 GeV, which are slightly above the mass of X(3872). For the 1−+1^{-+} qcqˉcˉqc\bar q\bar c charmonium-like state, the extracted mass is 4.5∼4.74.5\sim 4.7 GeV. We also discuss the possible decay modes and experimental search of the 1−+1^{-+} charmonium-like states.Comment: 18 pages, 6 figures and 6 table

    Possible JPC=0+−J^{PC} = 0^{+-} Exotic State

    Full text link
    We study the possible exotic states with JPC=0+−J^{PC} = 0^{+-} using the tetraquark interpolating currents with the QCD sum rule approach. The extracted masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the bottomomium-like states. There is no working region for the light tetraquark currents, which implies the light 0+−0^{+-} state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table

    Heavy Pentaquarks

    Full text link
    We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the JP=12+J^P={1\over 2}^+ or 32+{3\over 2}^+ heavy pentaquarks. We emphasize the difference in the predictions of these models. Future experimental searches at BESIII, CLEOc, BELLE, and LEP may find these interesting states

    Spin entanglement induced by spin-orbit interactions in coupled quantum dots

    Full text link
    We theoretically explore the possibility of creating spin quantum entanglement in a system of two electrons confined respectively in two vertically coupled quantum dots in the presence of Rashba type spin-orbit coupling. We find that the system can be described by a generalized Jaynes - Cummings model of two modes bosons interacting with two spins. The lower excitation states of this model are calculated to reveal the underlying physics of the far infrared absorption spectra. The analytic perturbation approach shows that an effective transverse coupling of spins can be obtained by eliminating the orbital degrees of freedom in the large detuning limit. Here, the orbital degrees of freedom of the two electrons, which are described by two modes of bosons, serve as a quantized data bus to exchange the quantum information between two electrons. Then a nontrivial two-qubit logic gate is realized and spin entanglement between the two electrons is created by virtue of spin-orbit coupling.Comment: 7 pages, 5 figure

    The Pseudoscalar Meson and Heavy Vector Meson Scattering Lengths

    Full text link
    We have systematically studied the S-wave pseudoscalar meson and heavy vector meson scattering lengths to the third order with the chiral perturbation theory, which will be helpful to reveal their strong interaction. For comparison, we have presented the numerical results of the scattering lengths (1) in the framework of the heavy meson chiral perturbation theory and (2) in the framework of the infrared regularization. The chiral expansion converges well in some channels.Comment: 10 pages, 1 figures, 4 tables. Corrected typos, Improved numerical results, and More dicussions. Accepted for publication by Phys.Rev.

    Pentaquark Magnetic Moments In Different Models

    Full text link
    We calculate the magnetic moments of the pentaquark states from different models and compare our results with predictions of other groups.Comment: 17 pages, no figur

    Magnetic Moments of JP=3/2+J^P={3/2}^+ Pentaquarks

    Full text link
    If the JPJ^P of Θ5+\Theta_5^+ and Ξ5−−\Xi_5^{--} pentaquarks is really found to be 12+{1\over 2}^+ by future experiments, they will be accompanied by JP=32+J^P={3\over 2}^+ partners in some models. It is reasonable to expect that these JP=32+J^P={3\over 2}^+ states will also be discovered in the near future with the current intensive experimental and theoretical efforts. We estimate JP=3/2+J^P={3/2}^+ pentaquark magnetic moments using different models.Comment: 13 page

    Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring

    Full text link
    The effects of electron-electron interaction of a two-electron nanoring on the energy levels and far-infrared (FIR) spectroscopy have been investigated based on a model calculation which is performed within the exactly numerical diagonalization. It is found that the interaction changes the energy spectra dramatically, and also shows significant influence on the FIR spectroscopy. The crossings between the lowest spin-singlet and triplet states induced by the coulomb interaction are clearly revealed. Our results are related to the experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223 (2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15
    • …
    corecore