999 research outputs found

    MapReduce is Good Enough? If All You Have is a Hammer, Throw Away Everything That's Not a Nail!

    Full text link
    Hadoop is currently the large-scale data analysis "hammer" of choice, but there exist classes of algorithms that aren't "nails", in the sense that they are not particularly amenable to the MapReduce programming model. To address this, researchers have proposed MapReduce extensions or alternative programming models in which these algorithms can be elegantly expressed. This essay espouses a very different position: that MapReduce is "good enough", and that instead of trying to invent screwdrivers, we should simply get rid of everything that's not a nail. To be more specific, much discussion in the literature surrounds the fact that iterative algorithms are a poor fit for MapReduce: the simple solution is to find alternative non-iterative algorithms that solve the same problem. This essay captures my personal experiences as an academic researcher as well as a software engineer in a "real-world" production analytics environment. From this combined perspective I reflect on the current state and future of "big data" research

    Deep Residual Learning for Small-Footprint Keyword Spotting

    Full text link
    We explore the application of deep residual learning and dilated convolutions to the keyword spotting task, using the recently-released Google Speech Commands Dataset as our benchmark. Our best residual network (ResNet) implementation significantly outperforms Google's previous convolutional neural networks in terms of accuracy. By varying model depth and width, we can achieve compact models that also outperform previous small-footprint variants. To our knowledge, we are the first to examine these approaches for keyword spotting, and our results establish an open-source state-of-the-art reference to support the development of future speech-based interfaces.Comment: Published in ICASSP 201

    Modeling Temporal Evidence from External Collections

    Full text link
    Newsworthy events are broadcast through multiple mediums and prompt the crowds to produce comments on social media. In this paper, we propose to leverage on this behavioral dynamics to estimate the most relevant time periods for an event (i.e., query). Recent advances have shown how to improve the estimation of the temporal relevance of such topics. In this approach, we build on two major novelties. First, we mine temporal evidences from hundreds of external sources into topic-based external collections to improve the robustness of the detection of relevant time periods. Second, we propose a formal retrieval model that generalizes the use of the temporal dimension across different aspects of the retrieval process. In particular, we show that temporal evidence of external collections can be used to (i) infer a topic's temporal relevance, (ii) select the query expansion terms, and (iii) re-rank the final results for improved precision. Experiments with TREC Microblog collections show that the proposed time-aware retrieval model makes an effective and extensive use of the temporal dimension to improve search results over the most recent temporal models. Interestingly, we observe a strong correlation between precision and the temporal distribution of retrieved and relevant documents.Comment: To appear in WSDM 201
    • …
    corecore