94,075 research outputs found
Multipartite Entanglement Measures and Quantum Criticality from Matrix and Tensor Product States
We compute the multipartite entanglement measures such as the global
entanglement of various one- and two-dimensional quantum systems to probe the
quantum criticality based on the matrix and tensor product states (MPSs/TPSs).
We use infinite time-evolving block decimation (iTEBD) method to find the
ground states numerically in the form of MPSs/TPSs, and then evaluate their
entanglement measures by the method of tensor renormalization group (TRG). We
find these entanglement measures can characterize the quantum phase transitions
by their derivative discontinuity right at the critical points in all models
considered here. We also comment on the scaling behaviors of the entanglement
measures by the ideas of quantum state renormalization group transformations.Comment: 22 pages, 11 figure
Directed percolation near a wall
Series expansion methods are used to study directed bond percolation clusters
on the square lattice whose lateral growth is restricted by a wall parallel to
the growth direction. The percolation threshold is found to be the same
as that for the bulk. However the values of the critical exponents for the
percolation probability and mean cluster size are quite different from those
for the bulk and are estimated by and respectively. On the other hand the exponent
characterising the scale of the cluster size
distribution is found to be unchanged by the presence of the wall.
The parallel connectedness length, which is the scale for the cluster length
distribution, has an exponent which we estimate to be and is also unchanged. The exponent of the mean
cluster length is related to and by the scaling
relation and using the above estimates
yields to within the accuracy of our results. We conjecture that
this value of is exact and further support for the conjecture is
provided by the direct series expansion estimate .Comment: 12pages LaTeX, ioplppt.sty, to appear in J. Phys.
Exploring the Referral and Usage of Science Fiction in HCI Literature
Research on science fiction (sci-fi) in scientific publications has indicated
the usage of sci-fi stories, movies or shows to inspire novel Human-Computer
Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked
computer science conference at present. For that reason, we examine the CHI
main track for the presence and nature of sci-fi referrals in relationship to
HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main
proceedings and code the context of 175 sci-fi referrals in 83 papers indexed
in the CHI main track. In our results, we categorize these papers into five
contemporary HCI research themes wherein sci-fi and HCI interconnect: 1)
Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or
Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5)
Visions of Computing and HCI. In conclusion, we discuss results and
implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted
submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer
proceedin
A logarithmic generalization of tensor product theory for modules for a vertex operator algebra
We describe a logarithmic tensor product theory for certain module categories
for a ``conformal vertex algebra.'' In this theory, which is a natural,
although intricate, generalization of earlier work of Huang and Lepowsky, we do
not require the module categories to be semisimple, and we accommodate modules
with generalized weight spaces. The corresponding intertwining operators
contain logarithms of the variables.Comment: 39 pages. Misprints corrected. Final versio
Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra
A comprehensive quantitative rescattering (QRS) theory for describing the
production of high-energy photoelectrons generated by intense laser pulses is
presented. According to the QRS, the momentum distributions of these electrons
can be expressed as the product of a returning electron wave packet with the
elastic differential cross sections (DCS) between free electrons with the
target ion. We show that the returning electron wave packets are determined
mostly by the lasers only, and can be obtained from the strong field
approximation. The validity of the QRS model is carefully examined by checking
against accurate results from the solution of the time-dependent Schr\"odinger
equation for atomic targets within the single active electron approximation. We
further show that experimental photoelectron spectra for a wide range of laser
intensity and wavelength can be explained by the QRS theory, and that the DCS
between electrons and target ions can be extracted from experimental
photoelectron spectra. By generalizing the QRS theory to molecular targets, we
discuss how few-cycle infrared lasers offer a promising tool for dynamic
chemical imaging with temporal resolution of a few femtoseconds.Comment: 19 pages, 19 figure
- …
