4 research outputs found
Power scaling of high-power linearly polarized fiber lasers with <10Â GHz linewidth
In this work, an all-fiberized polarization-maintained (PM) fiber laser has been demonstrated with a near-top-hat-shaped spectrum. By optimizing the modulation signal to generate near-top-hat-shaped spectrums, a 3-kW PM fiber laser has been achieved at <10Â GHz linewidth with the polarization extinction ratio of 96% and beam quality of 1.156, which is the highest output power ever reported with approximately 10Â GHz linewidth, and further scaling of output power is limited by stimulated Brillouin scattering. By decomposing the mode content, the proportion of the fundamental mode in the output laser is above 97%. The stimulated Raman scattering suppression ratio reaches 62Â dB at the maximal output power
Highly Integrated Cladding Mode Stripper Array for Compact High-Power Industrial Fiber Laser
A design integrating multiple cladding mode strippers used in fiber laser architectures into a single device is proposed. This approach can increase the compactness of fiber lasers, thus contributing to industrial laser processing applications. By offset-placing the most intense light-stripping parts, for instance, by inversing the laser injection directions or by displacing the beginning of etched sections, multiple cladding mode strippers bundled together into a single housing can have the hottest regions separated and can operate at full power simultaneously, with no evident cross-influence on each other. Two and three cladding-mode-stripper arrays have been implemented, and validation tests have been conducted with ~500-W cladding power being injected into each input port. For both arrayed devices, compared to the scenario in which only a single cladding mode stripper is working, no greater than a 2.1 °C temperature increment is generated when all components are operating concurrently, which demonstrates the effectiveness of the integration method. In this way, one half and two thirds of space/weight reduction can be realized, respectively, for the two and three cladding-mode-stripper arrays, which is meaningful, since cladding mode strippers are among the most bulky and hottest components in fiber lasers. Moreover, this integration provides a valuable reference for the miniaturization of other components, and thus, could contribute to the development fiber lasers with higher power-to-volume ratios, which would be more economical for industrial applications