623 research outputs found
Energy Dissipation and Regularity for a Coupled Navier-Stokes and Q-Tensor System
We study a complex non-newtonian fluid that models the flow of nematic liquid
crystals. The fluid is described by a system that couples a forced
Navier-Stokes system with a parabolic-type system. We prove the existence of
global weak solutions in dimensions two and three. We show the existence of a
Lyapunov functional for the smooth solutions of the coupled system and use the
cancellations that allow its existence to prove higher global regularity, in
dimension two. We also show the weak-strong uniqueness in dimension two
Blow up criterion for compressible nematic liquid crystal flows in dimension three
In this paper, we consider the short time strong solution to a simplified
hydrodynamic flow modeling the compressible, nematic liquid crystal materials
in dimension three. We establish a criterion for possible breakdown of such
solutions at finite time in terms of the temporal integral of both the maximum
norm of the deformation tensor of velocity gradient and the square of maximum
norm of gradient of liquid crystal director field.Comment: 22 page
Well-Posedness of Nematic Liquid Crystal Flow in
In this paper, we establish the local well-posedness for the Cauchy problem
of the simplified version of hydrodynamic flow of nematic liquid crystals
(\ref{LLF}) in for any initial data having small
-norm of . Here is the space of uniformly locally -integrable functions. For any
initial data with small , we show that there exists a unique, global solution
to (\ref{LLF}) which is smooth for and has monotone deceasing
-energy for .Comment: 29 page
Landau-De Gennes theory of nematic liquid\ud crystals: the Oseen-Frank limit and beyond
We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W 1,2 , to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer.\ud
\ud
\ud
We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions
On 2D Viscoelasticity with Small Strain
An exact two-dimensional rotation-strain model describing the motion of
Hookean incompressible viscoelastic materials is constructed by the polar
decomposition of the deformation tensor. The global existence of classical
solutions is proved under the smallness assumptions only on the size of initial
strain tensor. The proof of global existence utilizes the weak dissipative
mechanism of motion, which is revealed by passing the partial dissipation to
the whole system.Comment: Different contributions of strain and rotation of the deformation are
studied for viscoelastic fluids of Oldroyd-B type in 2
Global Solutions for Incompressible Viscoelastic Fluids
We prove the existence of both local and global smooth solutions to the
Cauchy problem in the whole space and the periodic problem in the n-dimensional
torus for the incompressible viscoelastic system of Oldroyd-B type in the case
of near equilibrium initial data. The results hold in both two and three
dimensional spaces. The results and methods presented in this paper are also
valid for a wide range of elastic complex fluids, such as magnetohydrodynamics,
liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy
problem for the incompressible viscoelastic system of Oldroyd-B type in the
case of near equilibrium initial dat
Analysis of Nematic Liquid Crystals with Disclination Lines
We investigate the structure of nematic liquid crystal thin films described
by the Landau--de Gennes tensor-valued order parameter with Dirichlet boundary
conditions of nonzero degree. We prove that as the elasticity constant goes to
zero a limiting uniaxial texture forms with disclination lines corresponding to
a finite number of defects, all of degree 1/2 or all of degree -1/2. We also
state a result on the limiting behavior of minimizers of the Chern-Simons-Higgs
model without magnetic field that follows from a similar proof.Comment: 40 pages, 1 figur
Ginzburg-Landau vortex dynamics with pinning and strong applied currents
We study a mixed heat and Schr\"odinger Ginzburg-Landau evolution equation on
a bounded two-dimensional domain with an electric current applied on the
boundary and a pinning potential term. This is meant to model a superconductor
subjected to an applied electric current and electromagnetic field and
containing impurities. Such a current is expected to set the vortices in
motion, while the pinning term drives them toward minima of the pinning
potential and "pins" them there. We derive the limiting dynamics of a finite
number of vortices in the limit of a large Ginzburg-Landau parameter, or \ep
\to 0, when the intensity of the electric current and applied magnetic field
on the boundary scale like \lep. We show that the limiting velocity of the
vortices is the sum of a Lorentz force, due to the current, and a pinning
force. We state an analogous result for a model Ginzburg-Landau equation
without magnetic field but with forcing terms. Our proof provides a unified
approach to various proofs of dynamics of Ginzburg-Landau vortices.Comment: 48 pages; v2: minor errors and typos correcte
Understorey plant community and light availability in conifer plantations and natural hardwood forests in Taiwan
Questions: What are the effects of replacing mixed species natural forests with Cryptomeria japonica plantations on understorey plant functional and species diversity? What is the role of the understorey light environment in determining understorey diversity and community in the two types of forest?
Location: Subtropical northeast Taiwan.
Methods: We examined light environments using hemispherical photography, and diversity and composition of understorey plants of a 35‐yr C. japonica plantation and an adjacent natural hardwood forest.
Results: Understorey plant species richness was similar in the two forests, but the communities were different; only 18 of the 91 recorded understorey plant species occurred in both forests. Relative abundance of plants among different functional groups differed between the two forests. Relative numbers of shade‐tolerant and shade‐intolerant seedling individuals were also different between the two forest types with only one shade‐intolerant seedling in the plantation compared to 23 seedlings belonging to two species in the natural forest. In the natural forest 11 species of tree seedling were found, while in the plantation only five were found, and the seedling density was only one third of that in the natural forest. Across plots in both forests, understorey plant richness and diversity were negatively correlated with direct sunlight but not indirect sunlight, possibly because direct light plays a more important role in understorey plant growth.
Conclusions: We report lower species and functional diversity and higher light availability in a natural hardwood forest than an adjacent 30‐yr C. japonica plantation, possibly due to the increased dominance of shade‐intolerant species associated with higher light availability. To maintain plant diversity, management efforts must be made to prevent localized losses of shade‐adapted understorey plants
The critical dimension for a 4th order problem with singular nonlinearity
We study the regularity of the extremal solution of the semilinear biharmonic
equation \bi u=\f{\lambda}{(1-u)^2}, which models a simple
Micro-Electromechanical System (MEMS) device on a ball B\subset\IR^N, under
Dirichlet boundary conditions on . We complete
here the results of F.H. Lin and Y.S. Yang \cite{LY} regarding the
identification of a "pull-in voltage" \la^*>0 such that a stable classical
solution u_\la with 0 exists for \la\in (0,\la^*), while there is
none of any kind when \la>\la^*. Our main result asserts that the extremal
solution is regular provided while is singular () for , in which case
on the unit ball, where
and .Comment: 19 pages. This paper completes and replaces a paper (with a similar
title) which appeared in arXiv:0810.5380. Updated versions --if any-- of this
author's papers can be downloaded at this http://www.birs.ca/~nassif
- …