17,698 research outputs found

    The motion of a neutrally buoyant particle of an elliptic shape in two dimensional shear flow: a numerical study

    Full text link
    In this paper, we investigate the motion of a neutrally buoyant cylinder of an elliptic shape freely moving in two dimensional shear flow by direct numerical simulation. An elliptic shape cylinder in shear flow, when initially being placed at the middle between two walls, either keeps rotating or has a stationary inclination angle depending on the particle Reynolds number Re=Grra2/νRe=G_r r_a^2/\nu, where GrG_r is the shear rate, rar_a is the semi-long axis of the elliptic cylinder and ν\nu is the kinetic viscosity of the fluid. The critical particle Reynolds number RecrRe_{cr} for the transition from a rotating motion to a stationary orientation depends on the aspect ratio AR=rb/raAR=r_b/r_a and the confined ratio K=2ra/HK=2r_a/H where rbr_b is the semi-short axis of the elliptic cylinder and HH is the distance between two walls. Although the increasing of either parameters makes an increase in RecrRe_{cr}, the dynamic mechanism is distinct. The ARAR variation causes the change of geometry shape; however, the KK variation influences the wall effect. The stationary inclination angle of non-rotating slender elliptic cylinder with smaller confined ratio seems to depend only on the value of ReRecrRe-Re_{cr}. An expected equilibrium position of the cylinder mass center in shear flow is the centerline between two walls, but when placing the particle away from the centerline initially, it migrates either toward an equilibrium height away from the middle between two walls or back to the middle depending on the confined ratio and particle Reynolds number.Comment: arXiv admin note: substantial text overlap with arXiv:1209.080

    Using Light-Switching Molecules to Modulate Charge Mobility in a Quantum Dot Array

    Full text link
    We have studied the electron hopping in a two-CdSe quantum dot system linked by an azobenzene-derived light-switching molecule. This system can be considered as a prototype of a QD supercrystal. Following the computational strategies given in our recent work [Chu et al. J. Phys. Chem. C 115, 21409 (2011)], we have investigated the effects of molecular attachment, molecular isomer (trans and cis) and QD size on electron hopping rate using Marcus theory. Our results indicate that molecular attachment has a large impact on the system for both isomers. In the most energetically favorable attachment, the cis isomer provides significantly greater coupling between the two QDs and hence the electron hopping rate is greater compared to the trans isomer. As a result, the carrier mobility of the QD array in the low carrier density, weak external electric field regime is several orders of magnitude higher in the cis compared to the trans configuration. This is the first demonstration of mobility modulation using QDs and azobenzene that could lead to a new type of switching device.Comment: 8 pages, 3 figure

    A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing Transform

    Get PDF
    This study introduces a new adaptive time-frequency (TF) analysis technique, synchrosqueezing transform (SST), to explore the dynamics of a laser-driven hydrogen atom at an {\it ab initio} level, upon which we have demonstrated its versatility as a new viable venue for further exploring quantum dynamics. For a signal composed of oscillatory components which can be characterized by instantaneous frequency, the SST enables rendering the decomposed signal based on the phase information inherited in the linear TF representation with mathematical support. Compared with the classical type TF methods, the SST clearly depicts several intrinsic quantum dynamical processes such as selection rules, AC Stark effects, and high harmonic generation

    Temperature-dependent permittivity of annealed and unannealed gold films

    Full text link
    Due to local field enhancement and subwavelength confinements, nano-plasmonics provide numerous novel applications. Simultaneously, as an efficient nanoscale heat generator from inherent absorption, thermo-plasmonics is emerging as an important branch. However, although significant temperature increase is involved in applications, detailed characterization of metal permittivity at different temperatures and corresponding thermo-derivative are lacking. In this work, we extract the permittivity of gold from 300K to the annealing temperature of 570K. By comparing annealed and unannealed films, more than one-order difference in thermo-derivative of permittivity is revealed, resulting in unexpectedly large variation of plasmonic properties. Our result is valuable not only for characterizing extensively used unannealed nanoparticles, but also for designing future thermo-nano-plasmonic systems.Comment: 6 pages, 4 figures, revised and published on Optics Expres
    corecore