328 research outputs found
Outer Regions of the Milky Way
With the start of the Gaia era, the time has come to address the major
challenge of deriving the star formation history and evolution of the disk of
our MilkyWay. Here we review our present knowledge of the outer regions of the
Milky Way disk population. Its stellar content, its structure and its dynamical
and chemical evolution are summarized, focussing on our lack of understanding
both from an observational and a theoretical viewpoint. We describe the
unprecedented data that Gaia and the upcoming ground-based spectroscopic
surveys will provide in the next decade. More in detail, we quantify the expect
accuracy in position, velocity and astrophysical parameters of some of the key
tracers of the stellar populations in the outer Galactic disk. Some insights on
the future capability of these surveys to answer crucial and fundamental issues
are discussed, such as the mechanisms driving the spiral arms and the warp
formation. Our Galaxy, theMilkyWay, is our cosmological laboratory for
understanding the process of formation and evolution of disk galaxies. What we
learn in the next decades will be naturally transferred to the extragalactic
domain.Comment: 22 pages, 10 figures, Invited review, Book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
On Relativistic Material Reference Systems
This work closes certain gaps in the literature on material reference systems
in general relativity. It is shown that perfect fluids are a special case of
DeWitt's relativistic elastic media and that the velocity--potential formalism
for perfect fluids can be interpreted as describing a perfect fluid coupled to
a fleet of clocks. A Hamiltonian analysis of the elastic media with clocks is
carried out and the constraints that arise when the system is coupled to
gravity are studied. When the Hamiltonian constraint is resolved with respect
to the clock momentum, the resulting true Hamiltonian is found to be a
functional only of the gravitational variables. The true Hamiltonian is
explicitly displayed when the medium is dust, and is shown to depend on the
detailed construction of the clocks.Comment: 18 pages, ReVTe
The Role of Subclass Switching in the Pathogenesis of Endemic Pemphigus Foliaceus
Endemic pemphigus foliaceus, like the sporadic form seen in the developed world, is mediated by IgG antibodies to desmoglein-1. We studied an endemic focus in Limao Verde, Brazil, where disease prevalence is 3.4%. We previously detected IgG antibodies to desmoglein-1 in 97% of patients, but also in 55% of normal subjects in the endemic focus, with progressively lower levels in normal subjects in surrounding areas. An environmental trigger is hypothesized to explain these and other findings. In this study we sought to determine if patients and enzyme-linked-immunosorbent-assay-positive normal subjects in Limao Verde differ in IgG subclass response to desmoglein-1. We developed a sensitive and specific subclass enzyme-linked immunosorbent assay using recombinant desmoglein-1 and standardized the assay to enable comparability between the four subclasses. We found that normal subjects have an IgG1 and IgG4 response, whereas patients have similar levels of IgG1 but a mean 19.3-fold higher IgG4 response. Patients in remission have a weak IgG4 response, and a 74.3-fold higher IgG4 response is associated with active disease. Finally, in five patients in whom we had blood samples from both before and after the onset of clinical disease, a mean 103.08-fold rise in IgG4 was associated with onset of clinical disease, but only a mean 3.45-fold rise in IgG1. These results suggest that the early antibody response in normal subjects living in the endemic area and in patients before the onset of clinical disease is mainly IgG1. Acquisition of an IgG4 response is a key step in the development of clinical disease
Scalable transactions in the cloud: partitioning revisited
Lecture Notes in Computer Science, 6427Cloud computing is becoming one of the most used paradigms to deploy highly available and scalable systems. These systems usually demand the management of huge amounts of data, which cannot be solved with traditional nor replicated database systems as we know them. Recent solutions store data in special key-value structures, in an approach that commonly lacks the consistency provided by transactional guarantees, as it is traded for high scalability and availability. In order to ensure consistent access to the information, the use of transactions is required. However, it is well-known that traditional replication protocols do not scale well for a cloud environment. Here we take a look at current proposals to deploy transactional systems in the cloud and we propose a new system aiming at being a step forward in achieving this goal. We proceed to focus on data partitioning and describe the key role it plays in achieving high scalability.This work has been partially supported by the Spanish Government under grant TIN2009-14460-C03-02 and by the Spanish MEC under grant BES-2007-17362 and by project ReD Resilient Database Clusters (PDTC/EIA-EIA/109044/2008)
The History of Galaxy Formation in Groups: An Observational Perspective
We present a pedagogical review on the formation and evolution of galaxies in
groups, utilizing observational information from the Local Group to galaxies at
z~6. The majority of galaxies in the nearby universe are found in groups, and
galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby
groups (~1 Mpc). This suggests that the group environment may play a role in
the formation of most galaxies. The Local Group, and other nearby groups,
display a diversity in star formation and morphological properties that puts
limits on how, and when, galaxies in groups formed. Effects that depend on an
intragroup medium, such as ram-pressure and strangulation, are likely not major
mechanisms driving group galaxy evolution. Simple dynamical friction arguments
however show that galaxy mergers should be common, and a dominant process for
driving evolution. While mergers between L_* galaxies are observed to be rare
at z < 1, they are much more common at earlier times. This is due to the
increased density of the universe, and to the fact that high mass galaxies are
highly clustered on the scale of groups. We furthermore discus why the local
number density environment of galaxies strongly correlates with galaxy
properties, and why the group environment may be the preferred method for
establishing the relationship between properties of galaxies and their local
density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics
Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V.
Ivanov, J. Borissov
Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam
Measurements are reported of the yield and spectrum of fluorescence, excited
by a 28.5 GeV electron beam, in air at a range of pressures of interest to
ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm.
System calibration has been performed using Rayleigh scattering of a nitrogen
laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6
photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors
In a test experiment at the Final Focus Test Beam of the Stanford Linear
Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and
nitrogen was measured. The measured photon yields between 300 and 400 nm at 1
atm and 29 deg C are Y(760 Torr, air) = 4.42 +/- 0.73 and Y(760 Torr, nitrogen)
= 29.2 +/- 4.8 photons per electron per meter. Assuming that the fluorescence
yield is proportional to the energy deposition of a charged particle traveling
through air, good agreement with measurements at lower particle energies is
observed.Comment: 22 pages, 14 figures, 2 tables, submitted to Astroparticle Physic
Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies
Recognition of N-linked glycan at residue N276 (glycan276) at the periphery of the CD4-binding site (CD4bs) on the HIV-envelope trimer is a formidable challenge for many CD4bs-directed antibodies. To understand how this glycan can be recognized, here we isolate two lineages of glycan276-dependent CD4bs antibodies. Antibody CH540-VRC40.01 (named for donor-lineage.clone) neutralizes 81% of a panel of 208 diverse strains, while antibody CH314-VRC33.01 neutralizes 45%. Cryo-electron microscopy (cryo-EM) structures of these two antibodies and 179NC75, a previously identified glycan276-dependent CD4bs antibody, in complex with HIV-envelope trimer reveal substantially different modes of glycan276 recognition. Despite these differences, binding of glycan276-dependent antibodies maintains a glycan276 conformation similar to that observed in the absence of glycan276-binding antibodies. By contrast, glycan276-independent CD4bs antibodies, such as VRC01, displace glycan276 upon binding. These results provide a foundation for understanding antibody recognition of glycan276 and suggest its presence may be crucial for priming immunogens seeking to initiate broad CD4bs recognition
General Overview of Black Hole Accretion Theory
I provide a broad overview of the basic theoretical paradigms of black hole
accretion flows. Models that make contact with observations continue to be
mostly based on the four decade old alpha stress prescription of Shakura &
Sunyaev (1973), and I discuss the properties of both radiatively efficient and
inefficient models, including their local properties, their expected stability
to secular perturbations, and how they might be tied together in global flow
geometries. The alpha stress is a prescription for turbulence, for which the
only existing plausible candidate is that which develops from the
magnetorotational instability (MRI). I therefore also review what is currently
known about the local properties of such turbulence, and the physical issues
that have been elucidated and that remain uncertain that are relevant for the
various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the
Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes
(Springer Publisher
- …