1,484 research outputs found

    General 2 charge geometries

    Full text link
    Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.Comment: 44 page

    BPS Electromagnetic Waves on Giant Gravitons

    Full text link
    We find new 1/8-BPS giant graviton solutions in AdS5Ă—S5AdS_5 \times S^5, carrying three angular momenta along S5S^5, and investigate their properties. Especially, we show that nonzero worldvolume gauge fields are admitted preserving supersymmetry. These gauge field modes can be viewed as electromagnetic waves along the compact D3 brane, whose Poynting vector contributes to the BPS angular momenta. We also analyze the (nearly-)spherical giant gravitons with worldvolume gauge fields in detail. Expressing the S3S^3 in Hopf fibration (S1S^1 fibred over S2S^2), the wave propagates along the S1S^1 fiber.Comment: 25 pages, no figures, v2: references adde

    Predicted Infrared and Raman Spectra for Neutral Ti_8C_12 Isomers

    Full text link
    Using a density-functional based algorithm, the full IR and Raman spectra are calculated for the neutral Ti_8C_12 cluster assuming geometries of Th, Td, D2d and C3v symmetry. The Th pentagonal dodecahedron is found to be dynamically unstable. The calculated properties of the relaxed structure having C3v symmetry are found to be in excellent agreement with experimental gas phase infrared results, ionization potential and electron affinity measurements. Consequently, the results presented may be used as a reference for further experimental characterization using vibrational spectroscopy.Comment: 6 pages, 5 figures. Physical Review A, 2002 (in press

    1/16-BPS Black Holes and Giant Gravitons in the AdS_5 X S^5 Space

    Get PDF
    We explore 1/16-BPS objects of type IIB string theory in AdS_5 * S^5. First, we consider supersymmetric AdS_5 black holes, which should be 1/16-BPS and have a characteristic that not all physical charges are independent. We point out that the Bekenstein-Hawking entropy of these black holes admits a remarkably simple expression in terms of (dependent) physical charges, which suggests its microscopic origin via certain Cardy or Hardy-Ramanujan formula. We also note that there is an upper bound for the angular momenta given by the electric charges. Second, we construct a class of 1/16-BPS giant graviton solutions in AdS_5 * S^5 and explore their properties. The solutions are given by the intersections of AdS_5 * S^5 and complex 3 dimensional holomorphic hyperspaces in C^{1+5}, the latter being the zero loci of three holomorphic functions which are homogeneous with suitable weights on coordinates. We investigate examples of giant gravitons, including their degenerations to tensionless strings.Comment: 25 pages, no figures, v2: references added, comments added in the conclusio

    Fermions from Half-BPS Supergravity

    Get PDF
    We discuss collective coordinate quantization of the half-BPS geometries of Lin, Lunin and Maldacena (hep-th/0409174). The LLM geometries are parameterized by a single function uu on a plane. We treat this function as a collective coordinate. We arrive at the collective coordinate action as well as path integral measure by considering D3 branes in an arbitrary LLM geometry. The resulting functional integral is shown, using known methods (hep-th/9309028), to be the classical limit of a functional integral for free fermions in a harmonic oscillator. The function uu gets identified with the classical limit of the Wigner phase space distribution of the fermion theory which satisfies u * u = u. The calculation shows how configuration space of supergravity becomes a phase space (hence noncommutative) in the half-BPS sector. Our method sheds new light on counting supersymmetric configurations in supergravity.Comment: 28 pages, 2 figures, epsf;(v3) eq. (3.3) clarified and notationally simplified; version to appear in JHE

    Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities

    Full text link
    The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information, either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a greater understanding of how they form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis

    Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs

    Full text link
    We show examples of excitation of coronal waves by flare-related abrupt eruptions of magnetic rope structures. The waves presumably rapidly steepened into shocks and freely propagated afterwards like decelerating blast waves that showed up as Moreton waves and EUV waves. We propose a simple quantitative description for such shock waves to reconcile their observed propagation with drift rates of metric type II bursts and kinematics of leading edges of coronal mass ejections (CMEs). Taking account of different plasma density falloffs for propagation of a wave up and along the solar surface, we demonstrate a close correspondence between drift rates of type II bursts and speeds of EUV waves, Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final publication is available at http://www.springerlink.co

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue
    • …
    corecore