21 research outputs found

    Neutrino scattering in supernovae and spin correlations of a unitary gas

    Full text link
    Core collapse supernova simulations can be sensitive to neutrino interactions near the neutrinosphere. This is the surface of last scattering. We model the neutrinosphere region as a warm unitary gas of neutrons. A unitary gas is a low density system of particles with large scattering lengths. We calculate modifications to neutrino scattering cross sections because of the universal spin and density correlations of a unitary gas. These correlations can be studied in laboratory cold atom experiments. We find significant reductions in cross sections, compared to free space interactions, even at relatively low densities. These reductions could reduce the delay time from core bounce to successful explosion in multidimensional supernova simulations.Comment: 5 pages, 2 figures, minor corrections in response to referee, Phys. Rev. C in pres

    Core-Collapse Supernova Simulations including Neutrino Interactions from the Virial EOS

    Full text link
    Core-collapse supernova explosions are driven by a central engine that converts a small fraction of the gravitational binding energy released during core collapse to outgoing kinetic energy. The suspected mode for this energy conversion is the neutrino mechanism, where a fraction of the neutrinos emitted from the newly formed protoneutron star are absorbed by and heat the matter behind the supernova shock. Accurate neutrino-matter interaction terms are crucial for simulating these explosions. In this proceedings for IAUS 331, SN 1987A, 30 years later, we explore several corrections to the neutrino-nucleon scattering opacity and demonstrate the effect on the dynamics of the core-collapse supernova central engine via two dimensional neutrino-radiation-hydrodynamics simulations. Our results reveal that the explosion properties are sensitive to corrections to the neutral-current scattering cross section at the 10-20% level, but only for densities at or above ∼1012\sim 10^{12} g cm−3^{-3}Comment: 6 pages, 3 figures, appears in Proc. IAU Symposium 331, SN 1987A, 30 years later - Cosmic Rays and Nuclei from Supernovae and Their Aftermath

    Characterizing a supernova's Standing Accretion Shock Instability with neutrinos and gravitational waves

    Full text link
    We perform a novel multi-messenger analysis for the identification and parameter estimation of the Standing Accretion Shock Instability (SASI) in a core collapse supernova with neutrino and gravitational wave (GW) signals. In the neutrino channel, this method performs a likelihood ratio test for the presence of SASI in the frequency domain. For gravitational wave signals we process an event with a modified constrained likelihood method. Using simulated supernova signals, the properties of the Hyper-Kamiokande neutrino detector, and O3 LIGO Interferometric data, we produce the two-dimensional probability density function (PDF) of the SASI activity indicator and calculate the probability of detection PDP_\mathrm{D} as well as the false identification probability PFIP_\mathrm{FI}. We discuss the probability to establish the presence of the SASI as a function of the source distance in each observational channel, as well as jointly. Compared to a single-messenger approach, the joint analysis results in PDP_\mathrm{D} (at PFI=0.1P_\mathrm{FI}=0.1) of SASI activities that is larger by up to ≈ 40%\approx~40\% for a distance to the supernova of 5 kpc. We also discuss how accurately the frequency and duration of the SASI activity can be estimated in each channel separately. Our methodology is suitable for implementation in a realistic data analysis and a multi-messenger setting.Comment: 24 pages, 15 figures, accepted by PR

    Deep crustal heating by neutrinos from the surface of accreting neutron stars

    Full text link
    We present a new mechanism for deep crustal heating in accreting neutron stars. Charged pions (π+\pi^+) are produced in nuclear collisions on the neutron star surface during active accretion and upon decay they provide a flux of neutrinos into the neutron star crust. For massive and/or compact neutron stars, neutrinos deposit ≈1–2 MeV\approx 1\textrm{--} 2 \, \mathrm{MeV} of heat per accreted nucleon into the inner crust. The strength of neutrino heating is comparable to the previously known sources of deep crustal heating, such as from pycnonuclear fusion reactions, and is relevant for studies of cooling neutron stars. We model the thermal evolution of a transient neutron star in a low-mass X-ray binary, and in the particular case of the neutron star MXB~1659-29 we show that additional deep crustal heating requires a higher thermal conductivity for the neutron star inner crust. A better knowledge of pion production cross sections near threshold would improve the accuracy of our predictions.Comment: 12 pages, 9 figures, 3 tables; [Added a new figure and edited the text in response to Referee's remarks and suggestions

    Neutrino scattering in supernovae and the universal spin correlations of a unitary gas

    No full text

    Uncertainty Quantification for Neutrino Opacities in Core-Collapse Supernovae and Neutron Star Mergers

    No full text
    We perform an extensive study of the correlations between the neutrino-nucleon inverse mean free paths (IMFPs) and the underlying equation of states (EoSs). Strong interaction uncertainties in the neutrino mean free path are investigated in different density regimes. The nucleon effective mass, the nucleon chemical potentials, and the residual interactions in the medium play an important role in determining neutrino-nucleon interactions in a density-dependent manner. We study how the above quantities are constrained by an EoS consistent with (i) nuclear mass measurements, (ii) proton-proton scattering phase shifts, and (iii) neutron star observations. We then study the uncertainties of both the charged current and the neutral current neutrino-nucleon inverse mean free paths due to the variation of these quantities, using Hartree-Fock+random phase approximation method. Finally, we calculate the Pearson correlation coefficients between (i) the EoS-based quantities and the EoS-based quantities; (ii) the EoS-based quantities and the IMFPs; (iii) the IMFPs and the IMFPs. We find a strong impact of residual interactions on neutrino opacity in the spin and spin-isospin channels, which are not well constrained by current nuclear modelings
    corecore