1,166 research outputs found

    Topological Wannier cycles for the bulk and edges

    Full text link
    Topological materials are often characterized by unique edge states which are in turn used to detect different topological phases in experiments. Recently, with the discovery of various higher-order topological insulators, such spectral topological characteristics are extended from edge states to corner states. However, the chiral symmetry protecting the corner states is often broken in genuine materials, leading to vulnerable corner states even when the higher-order topological numbers remain quantized and invariant. Here, we show that a local artificial gauge flux can serve as a robust probe of the Wannier type higher-order topological insulators which is effective even when the chiral symmetry is broken. The resultant observable signature is the emergence of the cyclic spectral flows traversing one or multiple band gaps. These spectral flows are associated with the local modes bound to the artificial gauge flux. This phenomenon is essentially due to the cyclic transformation of the Wannier orbitals when the local gauge flux acts on them. We extend topological Wannier cycles to systems with C2 and C3 symmetries and show that they can probe both the bulk and the edge Wannier centers, yielding rich topological phenomena

    Bis[3-(pyrazin-2-yl)-5-(pyridin-2-yl-κN)-1,2,4-triazol-1-ido-κN 1]copper(II)

    Get PDF
    In the mononuclear title complex, [Cu(C11H7N6)2], the CuII atom lies on a crystallographic inversion centre and is coordinated by four N atoms from two bidentate chelate monoanionic 3-(pyrazin-2-yl)-5-(pyridin-2-yl-1,2,4-triazol-1-ido ligands, two from the triazolide rings [Cu—N = 1.969 (2) Å] and two from the pyridine rings [Cu—N = 2.027 (2) Å], giving a slightly distorted square-planar geometry

    Observation of dynamic non-Hermitian skin effects

    Full text link
    Non-Hermitian effects have emerged as a new paradigm for the manipulation of phases of matter that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points and spectral topology, as well as exotic phenomena such as non-Hermitian skin effects (NHSEs). Most existing studies, however, focus on non-Hermitian eigenstates, whereas dynamic properties of non-Hermitian systems have been discussed only very recently, predicting unexpected phenomena such as wave self-healing, chiral Zener tunneling, and the dynamic NHSEs that are not yet confirmed in experiments. Here, we report the first experimental observation of rich non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various dynamic behaviors in different dynamic phases, revealing the intriguing nature of these phases that can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed tunable non-Hermitian skin dynamics and amplifications, the bulk unidirectional wave propagation, and the boundary wave trapping provide promising ways to guide, trap, and amplify waves in a controllable and robust way. Our findings unveil the fundamental aspects and open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter and give rise to novel applications in information processing

    Observation of a phononic higher-order Weyl semimetal

    Full text link
    Weyl semimetals are extraordinary systems where exotic phenomena such as Fermi arcs, pseudo-gauge fields and quantum anomalies arise from topological band degeneracy in crystalline solids for electrons and metamaterials for photons and phonons. On the other hand, higher-order topological insulators unveil intriguing multidimensional topological physics beyond the conventional bulk-edge correspondences. However, it is unclear whether higher-order topology can emerge in Weyl semimetals. Here, we report the experimental discovery of higher-order Weyl semimetals in its phononic analog which exhibit topologically-protected boundary states in multiple dimensions. We create the physical realization of the higher-order Weyl semimetal in a chiral phononic crystal with uniaxial screw symmetry. Using near-field spectroscopies, we observe the chiral Fermi arcs on the surfaces and a new type of hinge arc states on the hinge boundaries. These topological boundary arc states link the projections of Weyl points in different dimensions and directions, and hence demonstrate higher-order multidimensional topological physics in Weyl semimetals. Our study establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and unveils a new horizon of higher-order topological semimetals where unprecedented materials such as higher-order topological nodal-lines may emerge
    corecore