72 research outputs found

    CFLIT: Coexisting Federated Learning and Information Transfer

    Full text link
    Future wireless networks are expected to support diverse mobile services, including artificial intelligence (AI) services and ubiquitous data transmissions. Federated learning (FL), as a revolutionary learning approach, enables collaborative AI model training across distributed mobile edge devices. By exploiting the superposition property of multiple-access channels, over-the-air computation allows concurrent model uploading from massive devices over the same radio resources, and thus significantly reduces the communication cost of FL. In this paper, we study the coexistence of over-the-air FL and traditional information transfer (IT) in a mobile edge network. We propose a coexisting federated learning and information transfer (CFLIT) communication framework, where the FL and IT devices share the wireless spectrum in an OFDM system. Under this framework, we aim to maximize the IT data rate and guarantee a given FL convergence performance by optimizing the long-term radio resource allocation. A key challenge that limits the spectrum efficiency of the coexisting system lies in the large overhead incurred by frequent communication between the server and edge devices for FL model aggregation. To address the challenge, we rigorously analyze the impact of the computation-to-communication ratio on the convergence of over-the-air FL in wireless fading channels. The analysis reveals the existence of an optimal computation-to-communication ratio that minimizes the amount of radio resources needed for over-the-air FL to converge to a given error tolerance. Based on the analysis, we propose a low-complexity online algorithm to jointly optimize the radio resource allocation for both the FL devices and IT devices. Extensive numerical simulations verify the superior performance of the proposed design for the coexistence of FL and IT devices in wireless cellular systems.Comment: The paper has been accepted for publication by IEEE Transactions on Wireless Communications (March 2023

    Tensor Decomposition for EEG Signal Retrieval

    Full text link
    Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic non-negative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications

    Reconfigurable Intelligent Surface Empowered Over-the-Air Federated Edge Learning

    Full text link
    Federated edge learning (FEEL) has emerged as a revolutionary paradigm to develop AI services at the edge of 6G wireless networks as it supports collaborative model training at a massive number of mobile devices. However, model communication over wireless channels, especially in uplink model uploading of FEEL, has been widely recognized as a bottleneck that critically limits the efficiency of FEEL. Although over-the-air computation can alleviate the excessive cost of radio resources in FEEL model uploading, practical implementations of over-the-air FEEL still suffer from several challenges, including strong straggler issues, large communication overheads, and potential privacy leakage. In this article, we study these challenges in over-the-air FEEL and leverage reconfigurable intelligent surface (RIS), a key enabler of future wireless systems, to address these challenges. We study the state-of-the-art solutions on RIS-empowered FEEL and explore the promising research opportunities for adopting RIS to enhance FEEL performance.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Distributed Semi-supervised Fuzzy Regression with Interpolation Consistency Regularization

    Full text link
    Recently, distributed semi-supervised learning (DSSL) algorithms have shown their effectiveness in leveraging unlabeled samples over interconnected networks, where agents cannot share their original data with each other and can only communicate non-sensitive information with their neighbors. However, existing DSSL algorithms cannot cope with data uncertainties and may suffer from high computation and communication overhead problems. To handle these issues, we propose a distributed semi-supervised fuzzy regression (DSFR) model with fuzzy if-then rules and interpolation consistency regularization (ICR). The ICR, which was proposed recently for semi-supervised problem, can force decision boundaries to pass through sparse data areas, thus increasing model robustness. However, its application in distributed scenarios has not been considered yet. In this work, we proposed a distributed Fuzzy C-means (DFCM) method and a distributed interpolation consistency regularization (DICR) built on the well-known alternating direction method of multipliers to respectively locate parameters in antecedent and consequent components of DSFR. Notably, the DSFR model converges very fast since it does not involve back-propagation procedure and is scalable to large-scale datasets benefiting from the utilization of DFCM and DICR. Experiments results on both artificial and real-world datasets show that the proposed DSFR model can achieve much better performance than the state-of-the-art DSSL algorithm in terms of both loss value and computational cost

    Identifying Ketamine Responses in Treatment-Resistant Depression Using a Wearable Forehead EEG

    Full text link
    This study explores the responses to ketamine in patients with treatment-resistant depression (TRD) using a wearable forehead electroencephalography (EEG) device. We recruited fifty-five outpatients with TRD who were randomised into three approximately equal-sized groups (A: 0.5 mg/kg ketamine; B: 0.2 mg/kg ketamine; and C: normal saline) under double-blind conditions. The ketamine responses were measured by EEG signals and Hamilton Depression Rating Scale (HDRS) scores. At baseline, responders showed a significantly weaker EEG theta power than did non- responders (p < 0.05). Responders exhibited a higher EEG alpha power but lower EEG alpha asymmetry and theta cordance at post-treatment than at baseline (p < 0.05). Furthermore, our baseline EEG predictor classified responders and non-responders with 81.3 +- 9.5% accuracy, 82.1 +- 8.6% sensitivity and 91.9 +- 7.4% specificity. In conclusion, the rapid antidepressant effects of mixed doses of ketamine are associated with prefrontal EEG power, asymmetry and cordance at baseline and early post-treatment changes. The prefrontal EEG patterns at baseline may account for recognising ketamine effects in advance. Our randomised, double- blind, placebo-controlled study provides information regarding clinical impacts on the potential targets underlying baseline identification and early changes from the effects of ketamine in patients with TRD.Comment: This revised article is submitting to IEEE TBM
    • …
    corecore