12,538 research outputs found
Nonequilibrium transport through a quantum dot weakly coupled to Luttinger liquids
We study the nonequlibrium transport through a quantum dot weakly coupled to
Luttinger liquids (LL). A general current expression is derived by using
nonequilibrium Green function method. Then a special case of the dot with only
a single energy level is discussed. As a function of the dot's energy level, we
find that the current as well as differential conductance is strongly
renormalized by the interaction in the LL leads. In comparison with the system
with Fermi liquid (FL) leads, the current is suppressed, consistent with the
suppression of the electron tunneling density of states of the LL; and the
outset of the resonant tunneling is shifted to higher bias voltages. Besides,
the linear conductance obtained by Furusaki using master equation can be
reproduced from our result.Comment: 8 pages, 3 figures, Late
An interactively recurrent functional neural fuzzy network with fuzzy differential evolution and its applications
In this paper, an interactively recurrent functional neural fuzzy network (IRFNFN) with fuzzy differential evolution (FDE) learning method was proposed for solving the control and the prediction problems. The traditional differential evolution (DE) method easily gets trapped in a local optimum during the learning process, but the proposed fuzzy differential evolution algorithm can overcome this shortcoming. Through the information sharing of nodes in the interactive layer, the proposed IRFNFN can effectively reduce the number of required rule nodes and improve the overall performance of the network. Finally, the IRFNFN model and associated FDE learning algorithm were applied to the control system of the water bath temperature and the forecast of the sunspot number. The experimental results demonstrate the effectiveness of the proposed method
(1E,4E)-1,5-Bis(2,4-dimethylÂphenÂyl)penta-1,4-dien-3-one
In the title compound, C21H22O, a derivative of the biologically active compound curcumin, the dihedral angle between the aromatic ring planes is 20.57 (11)°
- …