864 research outputs found

    Learning Robust Object Recognition Using Composed Scenes from Generative Models

    Full text link
    Recurrent feedback connections in the mammalian visual system have been hypothesized to play a role in synthesizing input in the theoretical framework of analysis by synthesis. The comparison of internally synthesized representation with that of the input provides a validation mechanism during perceptual inference and learning. Inspired by these ideas, we proposed that the synthesis machinery can compose new, unobserved images by imagination to train the network itself so as to increase the robustness of the system in novel scenarios. As a proof of concept, we investigated whether images composed by imagination could help an object recognition system to deal with occlusion, which is challenging for the current state-of-the-art deep convolutional neural networks. We fine-tuned a network on images containing objects in various occlusion scenarios, that are imagined or self-generated through a deep generator network. Trained on imagined occluded scenarios under the object persistence constraint, our network discovered more subtle and localized image features that were neglected by the original network for object classification, obtaining better separability of different object classes in the feature space. This leads to significant improvement of object recognition under occlusion for our network relative to the original network trained only on un-occluded images. In addition to providing practical benefits in object recognition under occlusion, this work demonstrates the use of self-generated composition of visual scenes through the synthesis loop, combined with the object persistence constraint, can provide opportunities for neural networks to discover new relevant patterns in the data, and become more flexible in dealing with novel situations.Comment: Accepted by 14th Conference on Computer and Robot Visio

    Explore the Power of Dropout on Few-shot Learning

    Full text link
    The generalization power of the pre-trained model is the key for few-shot deep learning. Dropout is a regularization technique used in traditional deep learning methods. In this paper, we explore the power of dropout on few-shot learning and provide some insights about how to use it. Extensive experiments on the few-shot object detection and few-shot image classification datasets, i.e., Pascal VOC, MS COCO, CUB, and mini-ImageNet, validate the effectiveness of our method.Comment: arXiv admin note: substantial text overlap with arXiv:2210.0640
    • …
    corecore