864 research outputs found
Learning Robust Object Recognition Using Composed Scenes from Generative Models
Recurrent feedback connections in the mammalian visual system have been
hypothesized to play a role in synthesizing input in the theoretical framework
of analysis by synthesis. The comparison of internally synthesized
representation with that of the input provides a validation mechanism during
perceptual inference and learning. Inspired by these ideas, we proposed that
the synthesis machinery can compose new, unobserved images by imagination to
train the network itself so as to increase the robustness of the system in
novel scenarios. As a proof of concept, we investigated whether images composed
by imagination could help an object recognition system to deal with occlusion,
which is challenging for the current state-of-the-art deep convolutional neural
networks. We fine-tuned a network on images containing objects in various
occlusion scenarios, that are imagined or self-generated through a deep
generator network. Trained on imagined occluded scenarios under the object
persistence constraint, our network discovered more subtle and localized image
features that were neglected by the original network for object classification,
obtaining better separability of different object classes in the feature space.
This leads to significant improvement of object recognition under occlusion for
our network relative to the original network trained only on un-occluded
images. In addition to providing practical benefits in object recognition under
occlusion, this work demonstrates the use of self-generated composition of
visual scenes through the synthesis loop, combined with the object persistence
constraint, can provide opportunities for neural networks to discover new
relevant patterns in the data, and become more flexible in dealing with novel
situations.Comment: Accepted by 14th Conference on Computer and Robot Visio
Explore the Power of Dropout on Few-shot Learning
The generalization power of the pre-trained model is the key for few-shot
deep learning. Dropout is a regularization technique used in traditional deep
learning methods. In this paper, we explore the power of dropout on few-shot
learning and provide some insights about how to use it. Extensive experiments
on the few-shot object detection and few-shot image classification datasets,
i.e., Pascal VOC, MS COCO, CUB, and mini-ImageNet, validate the effectiveness
of our method.Comment: arXiv admin note: substantial text overlap with arXiv:2210.0640
- …