7,425 research outputs found

    A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    Full text link
    We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer kk. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index kk of the background black hole metric, which shows that a larger kk makes it harder for the condensation to form. We also observe that the index kk affects the conductivity and the gap frequency of the holographic superconductors.Comment: 14 pages, 6 figure

    First R and I Lights and Their Photometric Analyses of GSC 02393-00680

    Full text link
    We obtained complete RR and II light curves of GSC 02393-00680 in 2008 and analyzed them with the 2003 version of the W-D code. It is shown that GSC 02393-00680 is a W-type shallow contact binary system with a high mass ratio q=1.600q=1.600 and a degree of contact factor f=5.0f=5.0%(\pm1.3%). It will be a good example to check up on the TRO theory. A period investigation based on all available data suggests that the system has a small-amplitude period oscillation (A3=0.d0030A_3=0.^{d}0030; T3=1.92T_3=1.92years). This may indicate it has a moderate mass close third body, which is similar to XY Leo

    Gray-body factor and absorption of the Dirac field in ESTGB gravity

    Full text link
    The gray-body factor and the absorption cross section of the 4D ESTGB gravity with a mode of nonlinear electrodynamics for the massless Dirac field are studied in this paper. The magnetic charge value varies between −2(53)/3-2^{(\frac{5}{3})}/3 and 00 as well as the ADM mass is set to 11, which corresponds to a non-extreme black hole. The gray-body factor is obtained using the semi-analytic WKB method after solving the massless Dirac equation. When the absolute value of magnetic charge is increasing, the gray-body factor γ(ω)\gamma(\omega) is decreasing. In addition, the partial absorption cross section and the total absorption cross section are calculated by using the partial wave method. We find that the maximum value of partial absorption cross section decreases as κ\kappa increases. And the existence of magnetic charge causes the diminishing of the total absorption cross section. Finally, we find that the absorption cross section of the Dirac field is more sensitive to electric charge than magnetic charge by comparing the absorption cross section of the Reissner-Nordstro¨\rm\ddot{o}m and ESTGB-NLED black holes.Comment: 11 pages, 7 figure

    Weak gravitational lensing by an ESTGB black hole in the presence of a plasma

    Full text link
    This paper is devoted to studying the weak-field gravitational lensing properties of a 4D ESTGB black hole, which is surrounded by the plasma medium. The effects of the magnetic charges and the three plasma distribution models in the deflection of light around a 4D ESTGB black hole are investigated in detail. We find that the uniform plasma leads to a larger deflection of light rays in comparison with the singular isothermal sphere (SIS), the non-singular isothermal sphere (NSIS) models. Moreover, the deflection angle increases slightly as the absolute value of the magnetic charge decreases. Finally, we analyze the total magnification of image due to weak gravitational lensing around the black hole. The result shows that the presence of a uniform plasma medium remarkably enhances the total magnification whereas the non-uniform plasma reduces the total magnification.Comment: 24 pages, 15 figure

    Shadow, absorption and Hawking radiation of a Schwarzschild black hole surrounded by a cloud of strings in Rastall gravity

    Full text link
    This paper studies the black hole shadow, absorption cross section, and Hawking radiation of a massless scalar field in the background of a static spherically symmetric black hole spacetime that is surrounded by a cloud of strings in Rastall gravity. Specifically, the effects of the parameters aa and β\beta on the photon sphere and shadow radii are investigated. The results show that as the negative parameter β\beta decreases, the photon sphere and shadow radii change in an N-shape. In addition, the absorption cross section obtained after solving the massless Klein-Gordon equation is calculated using the sinc approximation and the partial waves method. We compare the absorption cross section obtained by the sinc approximation and the partial waves method, and find it to be exceptionally consistent in the mid-to-high frequency region. Furthermore, the effects of parameters aa and β\beta on absorption are examined in detail. Finally, we study in detail the effects of the parameters aa, β\beta and ll on the Hawking radiation power emission spectrum of the considered black hole. It turns out that the string parameter aa always suppresses the power emission spectrum, indicating that such black holes live longer when the string parameter aa is increased while other parameters are fixed.Comment: 27 pages, 10 figures, 1 Tabl

    Studies on Gas-phase Cyclometalations of [ArNi(PPh3)n]+ (n = 1 or 2) by Electrospray Ionization Tandem Mass Spectrometry

    Get PDF
    Gas-phase cyclometalation of [ArNi(PPh3)n]+ (n = 1, 2) complexes have been studied by ESI-MS/MS. The electron-donating substituents of aromatic iodides in the para position were found to inhibit the cyclometalation process of losing ArH, while the electron-withdrawing substituents in the para position were found to enhance it. These results indicate that the cyclometalation process of losing ArH is favored by electron-deficient aromatic groups. In addition, the detailed dissociation pathways of the cationic nickel complexes were studied, and among these pathways, the process of aryl-aryl interchange was also found to proceed in ESI-MS/MS
    • …
    corecore