10,374 research outputs found

    Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions

    Full text link
    Dijet, dihadron, hadron-jet angular correlations have been reckoned as important probes of the transverse momentum broadening effects in relativistic nuclear collisions. When a pair of high-energy jets created in hard collisions traverse the quark-gluon plasma produced in heavy-ion collisions, they become de-correlated due to the vacuum soft gluon radiation associated with the Sudakov logarithms and the medium-induced transverse momentum broadening. For the first time, we employ the systematical resummation formalism and establish a baseline calculation to describe the dihadron and hadron-jet angular correlation data in pppp and peripheral AAAA collisions where the medium effect is negligible. We demonstrate that the medium-induced broadening ⟨p⊥2⟩\langle p_\perp^2\rangle and the so-called jet quenching parameter q^\hat q can be extracted from the angular de-correlations observed in AAAA collisions. A global χ2\chi^2 analysis of dihadron and hadron-jet angular correlation data renders the best fit ⟨p⊥2⟩∼13 GeV2\langle p_\perp^2 \rangle \sim 13~\textrm{GeV}^2 for a quark jet at RHIC top energy. Further experimental and theoretical efforts along the direction of this work shall significantly advance the quantitative understanding of transverse momentum broadening and help us acquire unprecedented knowledge of jet quenching parameter in relativistic heavy-ion collisions.Comment: 6 pages, 3 figure

    1082 Free-breathing single-shot DENSE myocardial strain imaging using deformable registration

    Get PDF
    Free-breathing scans are often desirable in patients who find breath-holding difficult. We present a new approach for free-breathing myocardial strain imaging with displacement-encoding (DENSE) [1]. It acquires images with a single-shot sequence and removes respiratory motion using deformable registration

    On the Development and Application of FOG

    Get PDF
    Gyroscope is a type of angular velocity measuring device, which can precisely determine the orientation of moving objects. It was first employed in navigation and later became an inertial navigation instrument widely used in modern aviation, aerospace, and national defense industries. As a vital representative of gyroscope, the fiber-optic gyroscope (FOG) has advantages in terms of compact structure, high precision, high sensitivity, and high environmental adaptability. FOG has been broadly utilized in many fields, and is also a key component of modern navigation instruments. In this paper, the history, classification, performance indicators, and application requirements of gyroscope are briefly summarized. The development history of FOG based on Sagnac effect is described in detail. The three generations of FOG are interferometric FOG, resonant FOG, and stimulated Brillouin scattering FOG. At the same time, this chapter summarizes the development and research situation of FOG in the United States, Japan, France, and other major developing countries, and compares the application of FOG in various international companies

    Experimental and numerical studies on multi-spherical sliding friction isolation bearing

    Get PDF
    An innovative multi-spherical sliding friction isolation (MSFI) bearing has recently been developed. The novel isolator has efficient energy dissipation capacity and enough displacement capacity under strong earthquake excitations. The MSFI bearing is completely passive devices, yet shows smart stiffness and smart damping under external excitation. The principles of operation and force-displacement relationship of the novel isolator are presented in this paper. The sliding order of all sliding surfaces and force-displacement hysteretic relationship are verified through a displacement-control testing program, and numerical analysis of the MSFI bearing under low cyclic loading is carried out based on ABAQUS program. The results show the sliding order and force-displacement relationship of the MSFI bearing derived from theoretical analysis results and numerical simulation results are well agree with experimental data which the compression-shear testing of the MSFI bearing specimen with the identical curvature radii and friction coefficients. The adaptive behavior of MSFI bearing permits the isolation system to be separately optimized for multiple levels of seismic intensity and ground motions

    Anomalous Thermal Transport of SrTiO3_3 Driven by Anharmonic Phonon Renormalization

    Full text link
    SrTiO3_3 has been extensively investigated owing to its abundant degrees of freedom for modulation. However, the microscopic mechanism of thermal transport especially the relationship between phonon scattering and lattice distortion during the phase transition are missing and unclear. Based on deep-potential molecular dynamics and self-consistent \textit{ab initio} lattice dynamics, we explore the lattice anharmonicity-induced tetragonal-to-cubic phase transition and explain this anomalous behavior during the phase transition. Our results indicate the significant role of the renormalization of third-order interatomic force constants to second-order terms. Our work provides a robust framework for evaluating the thermal transport properties during structural transformation, benefitting the future design of promising thermal and phononic materials and devices

    Time-Delayed Magnetic Control and Narrowing of X-Ray frequency Spectra in Two-Target Nuclear Forward Scattering

    Full text link
    Controlling and narrowing x-ray frequency spectra in magnetically perturbed two-target nuclear forward scattering is theoretically studied. We show that different hard-x-ray spectral redistributions can be achieved by single or multiple switching of magnetic field in nuclear targets. Our scheme can generate x-ray spectral lines with tenfold intensity enhancement and spectral width narrower than four times the nuclear natural linewidth. The present results pave the way towards a brighter and flexible x-ray source for precision spectroscopy of nuclear resonances using modern synchrotron radiation.Comment: 5 pages, 5 figure

    Multiple Antenna Techniques

    Get PDF
    • …
    corecore