31 research outputs found

    Mechanisms and Metabolic Consequences of Adipocyte Progenitor Replicative Senescence

    Get PDF
    In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health

    Hop2 Interacts with the Transcription Factor CEBPα and Suppresses Adipocyte Differentiation

    Get PDF
    CCAAT enhancer binding protein (CEBP) transcription factors (TFs) are known to promote adipocyte differentiation; however, suppressors of CEBP TFs have not been reported thus far. Here, we find that homologous chromosome pairing protein 2 (Hop2) functions as an inhibitor for the TF CEBPα. We found that Hop2 mRNA is highly and specifically expressed in adipose tissue, and that ectopic Hop2 expression suppresses reporter activity induced by CEBP as revealed by DNA transfection. Recombinant and ectopically expressed Hop2 was shown to interact with CEBPα in pull-down and coimmunoprecipitation assays, and interaction between endogenous Hop2 and CEBPα was observed in the nuclei of 3T3 preadipocytes and adipocytes by immunofluorescence and coimmunoprecipitation of nuclear extracts. In addition, Hop2 stable overexpression in 3T3 preadipocytes inhibited adipocyte differentiation and adipocyte marker gene expression. These in vitro data suggest that Hop2 inhibits adipogenesis by suppressing CEBP-mediated transactivation. Consistent with a negative role for Hop2 in adipogenesis, ablation of Hop2 (Hop2−/−) in mice led to increased body weight, adipose volume, adipocyte size, and adipogenic marker gene expression. Adipogenic differentiation of isolated adipose-derived mesenchymal stem cells showed a greater number of lipid droplet–containing colonies formed in Hop2−/− adipose-derived mesenchymal stem cell cultures than in wt controls, which is associated with the increased expression of adipogenic marker genes. Finally, chromatin immunoprecipitation revealed a higher binding activity of endogenous CEBPα to peroxisome proliferator–activated receptor γ, a master adipogenic TF, and a known CEBPα target gene. Therefore, our study identifies for the first time that Hop2 is an intrinsic suppressor of CEBPα and thus adipogenesis in adipocytes

    Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers

    Get PDF
    Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What’s more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2’s dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers

    Dopamine promotes Klebsiella quasivariicola proliferation and inflammatory response in the presence of macrophages

    Get PDF
    BackgroundDopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest.ObjectiveConsidering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored.MethodsRAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. ResultsDopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. ConclusionsOur findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells

    allodb: An R package for biomass estimation at globally distributed extratropical forest plots

    Get PDF
    Allometric equations for calculation of tree above-ground biomass (AGB) form the basis for estimates of forest carbon storage and exchange with the atmosphere. While standard models exist to calculate forest biomass across the tropics, we lack a standardized tool for computing AGB across boreal and temperate regions that comprise the global extratropics. Here we present an integrated R package, allodb, containing systematically selected published allometric equations and proposed functions to compute AGB. The data component of the package is based on 701 woody species identified at 24 large Forest Global Earth Observatory (ForestGEO) forest dynamics plots representing a wide diversity of extratropical forests. A total of 570 parsed allometric equations to estimate individual tree biomass were retrieved, checked and combined using a weighting function designed to ensure optimal equation selection over the full tree size range with smooth transitions across equations. The equation dataset can be customized with built-in functions that subset the original dataset and add new equations. Although equations were curated based on a limited set of forest communities and number of species, this resource is appropriate for large portions of the global extratropics and can easily be expanded to cover novel forest types

    Identification of Luteolin as Enterovirus 71 and Coxsackievirus A16 Inhibitors through Reporter Viruses and Cell Viability-Based Screening

    No full text
    Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability‑based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 μM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs
    corecore