8,526 research outputs found
Crystal structure of tert-butyl (2-(4-oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)carbamate, C15H19N3O3S
Abstract
C15H19N3O3S, triclinic, P1̅ (no. 2), a = 8.682(8) Å, b = 9.700(8) Å, c = 11.273(10) Å, α = 90.681(14)°, β = 112.624(13)°, γ = 112.632(13)°, V = 794.5(12) Å3, Z = 2, R
gt(F) = 0.0405, wR
ref(F
2) = 0.1171, T = 296(2) K
Diagnostic Accuracy of CEUS LI-RADS for the Characterization of Liver Nodules 20 mm or Smaller in Patients at Risk for Hepatocellular Carcinoma.
Background: American College of Radiology contrast agent–enhanced US Liver Imaging Reporting and Data System (CEUS LI-RADS) was developed to improve the accuracy of hepatocellular carcinoma (HCC) diagnosis at contrast agent2enhanced US. However, to the knowledge of the authors, the diagnostic accuracy of the system in characterization of liver nodules 20 mm or smaller has not been fully evaluated.
Purpose: To evaluate the diagnostic accuracy of CEUS LI-RADS in diagnosing HCC in liver nodules 20 mm or smaller in patients at risk for HCC.
Materials and Methods: Between January 2015 and February 2018, consecutive patients at risk for HCC presenting with untreated liver nodules 20 mm or less were enrolled in this retrospective double-reader study. Each nodule was categorized according to the CEUS LI-RADS and World Federation for Ultrasound in Medicine and Biology (WFUMB)–European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) criteria. Diagnostic performance of CEUS LI-RADS and WFUMB-EFSUMB characterization was evaluated by using tissue histologic analysis, multiphase contrast-enhanced CT and MRI, and imaging follow-up as reference standard and compared by using McNemar test.
Results: The study included 175 nodules (mean diameter, 16.1 mm 6 3.4) in 172 patients (mean age, 51.8 years 6 10.6; 136 men). The sensitivity of CEUS LR-5 versus WFUMB-EFSUMB criteria in diagnosing HCC was 73.3% (95% confidence inter-val [CI]: 63.8%, 81.5%) versus 88.6% (95% CI: 80.9%, 94%), respectively (P, .001). The specificity of CEUS LR-5 versus WFUMB-EFSUMB criteria was 97.1% (95% CI: 90.1%, 99.7%) versus 87.1% (95% CI: 77%, 94%), respectively (P = .02). No malignant lesions were found in CEUS LR-1 and LR-2 categories. Only two nodules (of 41; 5%, both HCC) were malignant in CEUS LR-3 category. The incidences of HCC in CEUS LR-4, LR-5, and LR-M were 48% (11 of 23), 98% (77 of 79), and 75% (15 of 20), respectively. Two of 175 (1.1%) histologic analysis2confirmed intrahepatic cholangiocarcinomas were categorized as CEUS LR-M by CEUS LI-RADS and misdiagnosed as HCC by WFUMB-EFSUMB criteria.
Conclusion: The contrast-enhanced US Liver Imaging Reporting and Data System (CEUS LI-RADS) algorithm was an effective tool for characterization of small (≤20 mm) liver nodules in patients at risk for hepatocellular carcinoma (HCC). Compared with World Federation for Ultrasound in Medicine and Biology2European Federation of Societies for Ultrasound in Medicine and Biology criteria, CEUS LR-5 demonstrated higher specificity for diagnosing small HCCs with lower sensitivity
Reconstruction of human protein interolog network using evolutionary conserved network
<p>Abstract</p> <p>Background</p> <p>The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.</p> <p>Results</p> <p>This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.</p> <p>Conclusion</p> <p>Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.</p
Transduced PEP-1-Heme Oxygenase-1 Fusion Protein Attenuates Lung Injury in Septic Shock Rats
Oxidative stress and inflammation have been identified to play a vital role in the pathogenesis of lung injury induced by septic shock. Heme oxygenase-1 (HO-1), an effective antioxidant and anti-inflammatory and antiapoptotic substance, has been used for the treatment of heart, lung, and liver diseases. Thus, we postulated that administration of exogenous HO-1 protein transduced by cell-penetrating peptide PEP-1 has a protective role against septic shock-induced lung injury. Septic shock produced by cecal ligation and puncture caused severe lung damage, manifested in the increase in the lung wet/dry ratio, oxidative stress, inflammation, and apoptosis. However, these changes were reversed by treatment with the PEP-1-HO-1 fusion protein, whereas lung injury in septic shock rats was alleviated. Furthermore, the septic shock upregulated the expression of Toll-like receptor 4 (TLR4) and transcription factor NF-κB, accompanied by the increase of lung injury. Administration of PEP-1-HO-1 fusion protein reversed septic shock-induced lung injury by downregulating the expression of TLR4 and NF-κB. Our study indicates that treatment with HO-1 protein transduced by PEP-1 confers protection against septic shock-induced lung injury by its antioxidant, anti-inflammatory, and antiapoptotic effects
Alternative Splicing and Expression Profile Analysis of Expressed Sequence Tags in Domestic Pig
Domestic pig (Sus scrofa domestica) is one of the most important mammals to humans. Alternative splicing is a cellular mechanism in eukaryotes that greatly increases the diversity of gene products. Expression sequence tags (ESTs) have been widely used for gene discovery, expression profile analysis, and alternative splicing detection. In this study, a total of 712,905 ESTs extracted from 101 different non-normalized EST libraries of the domestic pig were analyzed. These EST libraries cover the nervous system, digestive system, immune system, and meat production related tissues from embryo, newborn, and adult pigs, making contributions to the analysis of alternative splicing variants as well as expression profiles in various stages of tissues. A modified approach was designed to cluster and assemble large EST datasets, aiming to detect alternative splicing together with EST abundance of each splicing variant. Much efforts were made to classify alternative splicing into different types and apply different filters to each type to get more reliable results. Finally, a total of 1,223 genes with average 2.8 splicing variants were detected among 16,540 unique genes. The overview of expression profiles would change when we take alternative splicing into account
- …